52 resultados para Collagen and elastic fibres


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Epidemiological data suggest that those who consume a diet rich in quercetin-containing foods may have a reduced risk of CVD. Furthermore, in vitro and ex vivo studies have observed the inhibition of collagen-induced platelet activation by quercetin. The aim of the present study was to investigate the possible inhibitory effects of quercetin ingestion from a dietary source on collagen-stimulated platelet aggregation and signalling. A double-blind randomised cross-over pilot study was undertaken. Subjects ingested a soup containing either a high or a low amount of quercetin. Plasma quercetin concentrations and platelet aggregation and signalling were assessed after soup ingestion. The high-quercetin soup contained 69 mg total quercetin compared with the low-quercetin soup containing 5 mg total quercetin. Plasma quercetin concentrations were significantly higher after high-quercetin soup ingestion than after low-quercetin soup ingestion and peaked at 2.59 (SEM 0.42) mu mol/l. Collagen-stimulated (0.5 mu g/ml) platelet aggregation was inhibited after ingestion of the high-quercetin soup in a time-dependent manner. Collagen-stimulated tyrosine phosphorylation of a key component of the collagen-signalling pathway via glycoprotein VI, Syk, was significantly inhibited by ingestion of the high-quercetin soup. The inhibition of Syk tyrosine phosphorylation was correlated with the area under the curve for the high-quercetin plasma profile. In conclusion, the ingestion of quercetin from a dietary source of onion soup could inhibit some aspects of collagen-stimulated platelet aggregation and signalling ex vivo. This further substantiates the epidemiological data suggesting that those who preferentially consume high amounts of quercetin-containing foods have a reduced risk of thrombosis and potential CVD risk.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Objective: Peroxynitrite (ONOO-) is formed in the inflamed and degenerating human joint. Peroxynitrite-modified collagen-II (PMC-II) was recently discovered in the serum of patients with osteoarthritis (OA) and rheumatoid arthritis (RA). Therefore we investigated the cellular effects of PMC-II on human mesenchymal progenitor cells (MPCs) as a model of cartilage and cartilage repair cells in the inflamed and degenerating joint. Design: MPCs were isolated from the trabecular bone of patients undergoing reconstructive surgery and were differentiated into a chondrogenic lineage. Cells were exposed to PMC-II and levels of the proinflammatory mediators nitric oxide (NO) and prostaglandin E-2 (PGE(2)) measured. Levels of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), phosphorylated mitogen activated protein kinases (MAPKs) and nuclear factor kappa B (NF-kappa B) activation were measured by enzyme linked immunosorbent assay (ELISA) together with specific MAPK and NF-kappa B inhibitors. Results: PMC-II induced NO and PGE(2) synthesis through upregulation of iNOS and COX-2 proteins. PMC-II also lead to the phosphorylation of MAPKs, extracellularly regulated kinase 1/2 (ERK1/2) and p38 [but not c-Jun NH2-terminal kinase (JNK1/2)] and the activation of proinflammatory transcription factor NF-kappa B. Inhibitors of p38, ERK1/2 and NF-kappa B prevented PMC-II induced NO and PGE(2) synthesis, NOS and COX-2 protein expression and NF-kappa B activation. Conclusion: iNOS, COX-2, NF-KB and MAPK are known to be activated in the joints of patients with OA and RA. PMC-II induced iNOS and COX-2 synthesis through p38, ERK1/2 and NF-KB dependent pathways suggesting a previously unidentified pathway for the synthesis of the proinflammatory mediators, NO and PGE(2), further suggesting that inhibitors of these pathways may be therapeutic in the inflamed and degenerating human joint. (c) 2005 OsteoArthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Background: Quercetin, a flavonoid present in the human diet, which is found in high levels in onions, apples, tea and wine, has been shown previously to inhibit platelet aggregation and signaling in vitro. Consequently, it has been proposed that quercetin may contribute to the protective effects against cardiovascular disease of a diet rich in fruit and vegetables. Objectives: A pilot human dietary intervention study was designed to investigate the relationship between the ingestion of dietary quercetin and platelet function. Methods: Human subjects ingested either 150 mg or 300 mg quercetin-4'-O-beta-D-glucoside Supplement to determine the systemic availability of quercetin. Platelets were isolated from subjects to analyse collagen-stimulated cell signaling and aggregation. Results: Plasma quercetin concentrations peaked at 4.66 mum (+/-0.77) and 9.72mum (+/-1.38) 30min after ingestion of 150-mg and 300-mg doses of quercefin-4'-O-beta-D-glucoside, respectively, demonstrating that quercetin was bioavailable, with plasma concentrations attained in the range known to affect platelet function in vitro. Platelet aggregation was inhibited 30 and 120 min after ingestion of both doses of quercetin-4'-O-beta-D-glucoside. Correspondingly, collagen-stimulated tyrosine phosphorylation of total platelet proteins was inhibited. This was accorripanied by reduced tyrosine phosphorylation of the tyrosine kinase Syk and phospholipase Cgamma2, components of the platelet glycoprotein VI collagen receptor signaling pathway. Conclusions: This study provides new evidence of the relatively high systemic availability of quercetin in the form of quercetin-4'-O-beta-D-glucoside by supplementation, and implicates quercetin as a dietary inhibitor of platelet cell signaling and thrombus formation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Background and purpose: Molecular mechanisms underlying the links between dietary intake of flavonoids and reduced cardiovascular disease risk are only partially understood. Key events in the pathogenesis of cardiovascular disease, particularly thrombosis, are inhibited by these polyphenolic compounds via mechanisms such as inhibition of platelet activation and associated signal transduction, attenuation of generation of reactive oxygen species, enhancement of nitric oxide production and binding to thromboxane A2 receptors. In vivo, effects of flavonoids are mediated by their metabolites, but the effects and modes of action of these compounds are not well-characterized. A good understanding of flavonoid structure–activity relationships with regard to platelet function is also lacking. Experimental approach: Inhibitory potencies of structurally distinct flavonoids (quercetin, apigenin and catechin) and plasma metabolites (tamarixetin, quercetin-3′-sulphate and quercetin-3-glucuronide) for collagen-stimulated platelet aggregation and 5-hydroxytryptamine secretion were measured in human platelets. Tyrosine phosphorylation of total protein, Syk and PLCγ2 (immunoprecipitation and Western blot analyses), and Fyn kinase activity were also measured in platelets. Internalization of flavonoids and metabolites in a megakaryocytic cell line (MEG-01 cells) was studied by fluorescence confocal microscopy. Key results: The inhibitory mechanisms of these compounds included blocking Fyn kinase activity and the tyrosine phosphorylation of Syk and PLCγ2 following internalization. Principal functional groups attributed to potent inhibition were a planar, C-4 carbonyl substituted and C-3 hydroxylated C ring in addition to a B ring catechol moiety. Conclusions and implications: The structure–activity relationship for flavonoids on platelet function presented here may be exploited to design selective inhibitors of cell signalling.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Background: Platelet activation by collagen depends on signals transduced by the glycoprotein (GP)VI–Fc receptor (FcR)-chain collagen receptor complex, which involves recruitment of phosphatidylinositol 3-kinase (PI3K) to phosphorylated tyrosines in the linker for activation of T cells (LAT). An interaction between the p85 regulatory subunit of PI3K and the scaffolding molecule Grb-2-associated binding protein-1 (Gab1), which is regulated by binding of the Src homology 2 domain-containing protein tyrosine phosphatase-2 (SHP-2) to Gab1, has been shown in other cell types to sustain PI3K activity to elicit cellular responses. Platelet endothelial cell adhesion molecule-1 (PECAM-1) functions as a negative regulator of platelet reactivity and thrombosis, at least in part by inhibiting GPVI–FcR-chain signaling via recruitment of SHP-2 to phosphorylated immunoreceptor tyrosine-based inhibitory motifs in PECAM-1. Objective: To investigate the possibility that PECAM-1 regulates the formation of the Gab1–p85 signaling complexes, and the potential effect of such interactions on GPVI-mediated platelet activation in platelets. Methods: The ability of PECAM-1 signaling to modulate the LAT signalosome was investigated with immunoblotting assays on human platelets and knockout mouse platelets. Results: PECAM-1-associated SHP-2 in collagen-stimulated platelets binds to p85, which results in diminished levels of association with both Gab1 and LAT and reduced collagen-stimulated PI3K signaling. We therefore propose that PECAM-1-mediated inhibition of GPVI-dependent platelet responses result, at least in part, from recruitment of SHP-2–p85 complexes to tyrosine-phosphorylated PECAM-1, which diminishes the association of PI3K with activatory signaling molecules, such as Gab1 and LAT.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The experiments were designed to use photochemically cross-linked plastically compressed collagen (PCPCC) gel to support corneal epithelial cells. A plastically compressed collagen (PCC) scaffold was photo cross-linked by UVA in the presence of riboflavin to form a biomaterial with optimal mechanical properties. The breaking force, rheology, surgical suture strength, transparency, ultrastructure, and cell-based biocompatibility were compared between PCPCC and PCC gels. The breaking force increased proportionally with an increased concentration of riboflavin. The stress required to reach breaking point of the PCPCC scaffolds was over two times higher compared to the stress necessary to break PCC scaffolds in the presence of 0.1% riboflavin. Rheology results indicated that the structural properties of PCC remain unaltered after UVA cross-linking. The PCC gels were more easily broken than PCPCC gels when sutured on to bovine corneas. The optical density values of PCPCC and PCC showed no significant differences (p > 0.05). SEM analyses showed that the collagen fibres within the PCPCC gels were similar in morphology to PCC gels. No difference in cell-based biocompatibility was seen between the PCPCC and PCC scaffolds in terms of their ability to support the ex vivo expansion of corneal epithelial cells or their subsequent differentiation evidenced by similar levels of cytokeratin 14. In conclusion, PCPCC scaffold is an optimal biomaterial for use in therapeutic tissue engineering of the cornea.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Proteomics approaches have made important contributions to the characterisation of platelet regulatory mechanisms. A common problem encountered with this method, however, is the masking of low-abundance (e.g. signalling) proteins in complex mixtures by highly abundant proteins. In this study, subcellular fractionation of washed human platelets either inactivated or stimulated with the glycoprotein (GP) VI collagen receptor agonist, collagen-related peptide, reduced the complexity of the platelet proteome. The majority of proteins identified by tandem mass spectrometry are involved in signalling. The effect of GPVI stimulation on levels of specific proteins in subcellular compartments was compared and analysed using in silico quantification, and protein associations were predicted using STRING (the search tool for recurring instances of neighbouring genes/proteins). Interestingly, we observed that some proteins that were previously unidentified in platelets including teneurin-1 and Van Gogh-like protein 1, translocated to the membrane upon GPVI stimulation. Newly identified proteins may be involved in GPVI signalling nodes of importance for haemostasis and thrombosis.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Snaclecs are small non-enzymatic proteins present in viper venoms reported to modulate haemostasis of victims through effects on platelets, vascular endothelial and smooth muscle cells. In this study, we have isolated and functionally characterised a snaclec which we named rhinocetin from the venom of West African gaboon viper, Bitis gabonica rhinoceros. Rhinocetin was shown to comprise α and β chains with the molecular masses of 13.5 and 13kDa respectively. Sequence and immunoblot analysis of rhinocetin confirmed this to be a novel snaclec. Rhinocetin inhibited collagen-stimulated activation of human platelets in dose dependent manner, but displayed no inhibitory effects on glycoprotein VI (collagen receptor) selective agonist, CRP-XL-, ADP- or thrombin-induced platelet activation. Rhinocetin antagonised the binding of monoclonal antibodies against the α2 subunit of integrin α2β1 to platelets and coimmunoprecipitation analysis confirmed integrin α2β1 as a target for this venom protein. Rhinocetin inhibited a range of collagen induced platelet functions such as fibrinogen binding, calcium mobilisation, granule secretion, aggregation and thrombus formation. It also inhibited integrin α2β1 dependent functions of human endothelial cells. Together, our data suggest rhinocetin to be a modulator of integrin α2β1 function and thus may provide valuable insights into the role of this integrin in physiological and pathophysiological scenarios including haemostasis, thrombosis and envenomation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Platelet endothelial cell adhesion molecule-1 (CD31) is a 130-kDa glycoprotein receptor present on the surface of platelets, neutrophils, monocytes, certain T-lymphocytes, and vascular endothelial cells. CD31 is involved in adhesion and signal transduction and is implicated in the regulation of a number of cellular processes. These include transendothelial migration of leukocytes, integrin regulation, and T-cell function, although its function in platelets remains unclear. In this study, we demonstrate the ability of the platelet agonists collagen, convulxin, and thrombin to induce tyrosine phosphorylation of CD31. Furthermore, we show that this event is independent of platelet aggregation and secretion and is accompanied by an increase in surface expression of CD31. A kinase capable of phosphorylating CD31 was detected in CD31 immunoprecipitates, and its activity was increased following activation of platelets. CD31 tyrosine phosphorylation was reduced or abolished by the Src family kinase inhibitor PP2, suggesting a role for these enzymes. In accordance with this, each of the Src family members expressed in platelets, namely Fyn, Lyn, Src, Yes, and Hck, was shown to co-immunoprecipitate with CD31. The involvement of Src family kinases in this process was confirmed through the study of mouse platelets deficient in Fyn.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Since megakaryocytes are the cellular precursors of platelets we have investigated whether they share responses to platelet agonists, in particular collagen. Although previous studies have reported responses to thrombin in non-human megakaryocytes, through studies of single cell calcium responses and protein tyrosine-phosphorylation we demonstrate for the first time that both isolated human megakaryocytes and CD41/61-positive megakaryocytes derived in culture from CD34+ cells share responses to the platelet agonists collagen, collagen-related peptide and thrombin. The responses to either collagen or CRP were seen only in the most mature megakaryocytes and not in megakaryocyte-like cell lines, suggesting that the response to collagen is a characteristic developed late during megakaryocyte differentiation. These primary cells offer the opportunity to use many molecular and cellular techniques to study and manipulate signalling events in response to platelet receptor agonists, which cannot be performed in the small, anucleate platelet itself.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Activation of mouse platelets by collagen is associated with tyrosine phosphorylation of multiple proteins including the Fc receptor gamma-chain, the tyrosine kinase Syk and phospholipase Cgamma2, suggesting that collagen signals in a manner similar to that of immune receptors. This hypothesis has been tested using platelets from mice lacking the Fc receptor gamma-chain or Syk. Tyrosine phosphorylation of Syk and phospholipase Cgamma2 by collagen stimulation is absent in mice lacking the Fc receptor gamma-chain. Tyrosine phosphorylation of phospholipase Cgamma2 by collagen stimulation is also absent in mice platelets which lack Syk, although phosphorylation of the Fc receptor gamma-chain is maintained. In contrast, tyrosine phosphorylation of platelet proteins by the G protein-coupled receptor agonist thrombin is maintained in mouse platelets deficient in Fc receptor gamma-chain or Syk. The absence of Fc receptor gamma-chain or Syk is accompanied by a loss of secretion and aggregation responses in collagen- but not thrombin-stimulated platelets. These observations provide the first direct evidence of an essential role for the immunoreceptor tyrosine-based activation motif (ITAM) in signalling by a non-immune receptor stimulus.