45 resultados para Classificació AMS::65 Numerical analysis::65D Numerical approximation and computational geometry
Resumo:
This paper presents the development of a rapid method with ultraperformance liquid chromatography–tandem mass spectrometry (UPLC-MS/MS) for the qualitative and quantitative analyses of plant proanthocyanidins directly from crude plant extracts. The method utilizes a range of cone voltages to achieve the depolymerization step in the ion source of both smaller oligomers and larger polymers. The formed depolymerization products are further fragmented in the collision cell to enable their selective detection. This UPLC-MS/MS method is able to separately quantitate the terminal and extension units of the most common proanthocyanidin subclasses, that is, procyanidins and prodelphinidins. The resulting data enable (1) quantitation of the total proanthocyanidin content, (2) quantitation of total procyanidins and prodelphinidins including the procyanidin/prodelphinidin ratio, (3) estimation of the mean degree of polymerization for the oligomers and polymers, and (4) estimation of how the different procyanidin and prodelphinidin types are distributed along the chromatographic hump typically produced by large proanthocyanidins. All of this is achieved within the 10 min period of analysis, which makes the presented method a significant addition to the chemistry tools currently available for the qualitative and quantitative analyses of complex proanthocyanidin mixtures from plant extracts.
Resumo:
We compare and contrast the accuracy and uncertainty in forecasts of rents with those for a variety of macroeconomic series. The results show that in general forecasters tend to be marginally more accurate in the case of macro-economic series than with rents. In common across all of the series, forecasts tend to be smoothed with forecasters under-estimating performance during economic booms, and vice-versa in recessions We find that property forecasts are affected by economic uncertainty, as measured by disagreement across the macro-forecasters. Increased uncertainty leads to increased dispersion in the rental forecasts and a reduction in forecast accuracy.
Resumo:
Wall plaster sequences from the Neolithic town of Çatalhöyük have been analysed and compared to three types of natural sediment found in the vicinity of the site, using a range of analytical techniques. Block samples containing the plaster sequences were removed from the walls of several different buildings on the East Mound. Sub-samples were examined by IR spectroscopy, X-ray diffraction and X-ray fluorescence to determine the overall mineralogical and elemental composition, whilst thin sections were studied using optical polarising microscopy, IR Microscopy and Environmental Scanning Electron Microscopy with Energy Dispersive X-ray analysis. The results of this study have shown that there are two types of wall plaster found in the sequences and that the sediments used to produce these were obtained from at least two distinct sources. In particular, the presence of clay, calcite and magnesian calcite in the foundation plasters suggested that these were prepared predominantly from a marl source. On the other hand, the finishing plasters were found to contain dolomite with a small amount of clay and no calcite, revealing that softlime was used in their preparation. Whilst marl is located directly below and around Çatalhöyük, the nearest source of softlime is 6.5 km away, an indication that the latter was important to the Neolithic people, possibly due to the whiter colour (5Y 8/1) of this sediment. Furthermore, the same two plaster types were found on each wall of Building 49, the main building studied in this research, and in all five buildings investigated, suggesting that the use of these sources was an established practice for the inhabitants of several different households across the site.
Resumo:
In 1984 and 1985 a series of experiments was undertaken in which dayside ionospheric flows were measured by the EISCAT “Polar” experiment, while observations of the solar wind and interplanetary magnetic field (IMF) were made by the AMPTE UKS and IRM spacecraft upstream from the Earth's bow shock. As a result, 40 h of simultaneous data were acquired, which are analysed in this paper to investigate the relationship between the ionospheric flow and the North-South (Bz) component of the IMF. The ionospheric flow data have 2.5 min resolution, and cover the dayside local time sector from ∼ 09:30 to ∼ 18:30 M.L.T. and the latitude range from 70.8° to 74.3°. Using cross-correlation analysis it is shown that clear relationships do exist between the ionospheric flow and IMF Bz, but that the form of the relations depends strongly on latitude and local time. These dependencies are readily interpreted in terms of a twinvortex flow pattern in which the magnitude and latitudinal extent of the flows become successively larger as Bz becomes successively more negative. Detailed maps of the flow are derived for a range of Bz values (between ± 4 nT) which clearly demonstrate the presence of these effects in the data. The data also suggest that the morning reversal in the East-West component of flow moves to earlier local times as Bz, declines in value and becomes negative. The correlation analysis also provides information on the ionospheric response time to changes in IMF Bz, it being found that the response is very rapid indeed. The most rapid response occurs in the noon to mid-afternoon sector, where the westward flows of the dusk cell respond with a delay of 3.9 ± 2.2 min to changes in the North-South field at the subsolar magnetopause. The flows appear to evolve in form over the subsequent ~ 5 min interval, however, as indicated by the longer response times found for the northward component of flow in this sector (6.7 ±2.2 min), and in data from earlier and later local times. No evidence is found for a latitudinal gradient in response time; changes in flow take place coherently in time across the entire radar field-of-view.
Resumo:
Carbon and nitrogen stable isotope ratios of 45 human and 23 faunal bone collagen samples were measured to study human diet and the management of domestic herbivores in past Jordan, contrasting skeletal remains from the Middle and Late Bronze Age and the Late Roman and Byzantine periods from the site of Ya'amūn near Irbid. The isotope data demonstrate that the management of the sheep and goats changed over time, with the earlier animals consuming more plants from semi-arid habitats, possibly because of transhumant herding strategies. The isotope data for fish presented here are the first from archaeological contexts from the Southern Levant. Although fish of diverse provenance was available at the site, human diet was predominately based on terrestrial resources and there was little dietary variability within each time-period. Isotopic variation between humans from different time-periods can mostly be explained by ‘baseline shifts’ in the available food sources; however, it is suggested that legumes may have played a more significant role in Middle and Late Bronze Age diet than later on.
Resumo:
Cacao swollen shoot virus (CSSV) causes the Cacao swollen shoot virus disease (CSSVD) and significantly reduces production in West African cacao. This study characterised the current status of the disease in the major cacao growing States in Nigeria and attempted a clarification on the manner of CSSV transmission. Two separate field surveys and sample collections were conducted in Nigeria in summer 2012 and spring 2013. PCR-based screening of cacao leaf samples and subsequent DNA sequencing showed that the disease continues to persist in Ondo and Oyo States and in new cacao sites in Abia, Akwa Ibom, Cross River and Edo States. Mealybug samples collected were identified using a robust approach involving environmental scanning electron microscopy, histology and DNA barcoding, which highlighted the importance of integrative taxonomy in the study. The results show that the genus Planococcus (Planococcus citri (Risso) and/or Planococcus minor (Maskell)) was the most abundant vector (73.5%) at the sites examined followed by Formicococcus njalensis (Laing) (19.0 %). In a laboratory study, the feeding behaviour of Pl. citri, Pseudococcus longispinus (Targioni-Tozzetti) and Pseudococcus viburni (Signoret) on cacao were investigated using electrical penetration graph (EPG) analysis. EPG waveforms reflecting intercellular stylet penetration (C), extracellular salivation (E1e), salivation in sieve elements (E1), phloem ingestion (E2), derailed stylet mechanics (F), xylem ingestion (G) and non-probing phase (Np) were analysed. Individual mealybugs exhibited marked variation within species and significantly differed (p ≤ .05) between species for E1e and E1. PCR-based assessments of the retention time for CSSV in viruliferous Pl. citri, Ps. longispinus and Ps. viburni fed on a non-cacao diet showed that CSSV was still detectable after 144 hours. These unusually long durations for a pathogen currently classified as a semi-persistent virus have implications for the design of non-malvaceous barrier crops currently being considered for the protection of new cacao plantings.
Resumo:
In this study, we systematically compare a wide range of observational and numerical precipitation datasets for Central Asia. Data considered include two re-analyses, three datasets based on direct observations, and the output of a regional climate model simulation driven by a global re-analysis. These are validated and intercompared with respect to their ability to represent the Central Asian precipitation climate. In each of the datasets, we consider the mean spatial distribution and the seasonal cycle of precipitation, the amplitude of interannual variability, the representation of individual yearly anomalies, the precipitation sensitivity (i.e. the response to wet and dry conditions), and the temporal homogeneity of precipitation. Additionally, we carried out part of these analyses for datasets available in real time. The mutual agreement between the observations is used as an indication of how far these data can be used for validating precipitation data from other sources. In particular, we show that the observations usually agree qualitatively on anomalies in individual years while it is not always possible to use them for the quantitative validation of the amplitude of interannual variability. The regional climate model is capable of improving the spatial distribution of precipitation. At the same time, it strongly underestimates summer precipitation and its variability, while interannual variations are well represented during the other seasons, in particular in the Central Asian mountains during winter and spring
Resumo:
Recent interest in the validation of general circulation models (GCMs) has been devoted to objective methods. A small number of authors have used the direct synoptic identification of phenomena together with a statistical analysis to perform the objective comparison between various datasets. This paper describes a general method for performing the synoptic identification of phenomena that can be used for an objective analysis of atmospheric, or oceanographic, datasets obtained from numerical models and remote sensing. Methods usually associated with image processing have been used to segment the scene and to identify suitable feature points to represent the phenomena of interest. This is performed for each time level. A technique from dynamic scene analysis is then used to link the feature points to form trajectories. The method is fully automatic and should be applicable to a wide range of geophysical fields. An example will be shown of results obtained from this method using data obtained from a run of the Universities Global Atmospheric Modelling Project GCM.
Resumo:
In designing modern office buildings, building spaces are frequently zoned by introducing internal partitioning, which may have a significant influence on the room air environment. This internal partitioning was studied by means of model test, numerical simulation, and statistical analysis as the final stage. In this paper, the results produced from the statistical analysis are summarized and presented.
Resumo:
Most building services products are installed while a building is constructed, but they are not operated until the building is commissioned. The warranty of the products may cover the time starting from their installation to the end of the warranty period. Prior to the commissioning of the building, the products are at a dormant mode (i.e., not operated) but protected by the warranty. For such products, both the usage intensity and the failure patterns are different from those with continuous usage intensity and failure patterns. This paper develops warranty cost models for repairable products with a dormant mode from both the manufacturer's and buyer's perspectives. Relationships between the failure patterns at the dormant mode and at the operational mode are also discussed. Numerical examples and sensitivity analysis are used to demonstrate the applicability of the methodology derived in the paper.
Resumo:
A numerical study of fluid mechanics and heat transfer in a scraped surface heat exchanger with non-Newtonian power law fluids is undertaken. Numerical results are generated for 2D steady-state conditions using finite element methods. The effect of blade design and material properties, and especially the independent effects of shear thinning and heat thinning on the flow and heat transfer, are studied. The results show that the gaps at the root of the blades, where the blades are connected to the inner cylinder, remove the stagnation points, reduce the net force on the blades and shift the location of the central stagnation point. The shear thinning property of the fluid reduces the local viscous dissipation close to the singularity corners, i.e. near the tip of the blades, and as a result the local fluid temperature is regulated. The heat thinning effect is greatest for Newtonian fluids where the viscous dissipation and the local temperature are highest at the tip of the blades. Where comparison is possible, very good agreement is found between the numerical results and the available data. Aspects of scraped surface heat exchanger design are assessed in the light of the results. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
By eliminating the short range negative divergence of the Debye–Hückel pair distribution function, but retaining the exponential charge screening known to operate at large interparticle separation, the thermodynamic properties of one-component plasmas of point ions or charged hard spheres can be well represented even in the strong coupling regime. Predicted electrostatic free energies agree within 5% of simulation data for typical Coulomb interactions up to a factor of 10 times the average kinetic energy. Here, this idea is extended to the general case of a uniform ionic mixture, comprising an arbitrary number of components, embedded in a rigid neutralizing background. The new theory is implemented in two ways: (i) by an unambiguous iterative algorithm that requires numerical methods and breaks the symmetry of cross correlation functions; and (ii) by invoking generalized matrix inverses that maintain symmetry and yield completely analytic solutions, but which are not uniquely determined. The extreme computational simplicity of the theory is attractive when considering applications to complex inhomogeneous fluids of charged particles.
Resumo:
We consider the numerical treatment of second kind integral equations on the real line of the form ∅(s) = ∫_(-∞)^(+∞)▒〖κ(s-t)z(t)ϕ(t)dt,s=R〗 (abbreviated ϕ= ψ+K_z ϕ) in which K ϵ L_1 (R), z ϵ L_∞ (R) and ψ ϵ BC(R), the space of bounded continuous functions on R, are assumed known and ϕ ϵ BC(R) is to be determined. We first derive sharp error estimates for the finite section approximation (reducing the range of integration to [-A, A]) via bounds on (1-K_z )^(-1)as an operator on spaces of weighted continuous functions. Numerical solution by a simple discrete collocation method on a uniform grid on R is then analysed: in the case when z is compactly supported this leads to a coefficient matrix which allows a rapid matrix-vector multiply via the FFT. To utilise this possibility we propose a modified two-grid iteration, a feature of which is that the coarse grid matrix is approximated by a banded matrix, and analyse convergence and computational cost. In cases where z is not compactly supported a combined finite section and two-grid algorithm can be applied and we extend the analysis to this case. As an application we consider acoustic scattering in the half-plane with a Robin or impedance boundary condition which we formulate as a boundary integral equation of the class studied. Our final result is that if z (related to the boundary impedance in the application) takes values in an appropriate compact subset Q of the complex plane, then the difference between ϕ(s)and its finite section approximation computed numerically using the iterative scheme proposed is ≤C_1 [kh log〖(1⁄kh)+(1-Θ)^((-1)⁄2) (kA)^((-1)⁄2) 〗 ] in the interval [-ΘA,ΘA](Θ<1) for kh sufficiently small, where k is the wavenumber and h the grid spacing. Moreover this numerical approximation can be computed in ≤C_2 N logN operations, where N = 2A/h is the number of degrees of freedom. The values of the constants C1 and C2 depend only on the set Q and not on the wavenumber k or the support of z.
Resumo:
Numerical climate models constitute the best available tools to tackle the problem of climate prediction. Two assumptions lie at the heart of their suitability: (1) a climate attractor exists, and (2) the numerical climate model's attractor lies on the actual climate attractor, or at least on the projection of the climate attractor on the model's phase space. In this contribution, the Lorenz '63 system is used both as a prototype system and as an imperfect model to investigate the implications of the second assumption. By comparing results drawn from the Lorenz '63 system and from numerical weather and climate models, the implications of using imperfect models for the prediction of weather and climate are discussed. It is shown that the imperfect model's orbit and the system's orbit are essentially different, purely due to model error and not to sensitivity to initial conditions. Furthermore, if a model is a perfect model, then the attractor, reconstructed by sampling a collection of initialised model orbits (forecast orbits), will be invariant to forecast lead time. This conclusion provides an alternative method for the assessment of climate models.