96 resultados para Class Struggle
Resumo:
A greedy technique is proposed to construct parsimonious kernel classifiers using the orthogonal forward selection method and boosting based on Fisher ratio for class separability measure. Unlike most kernel classification methods, which restrict kernel means to the training input data and use a fixed common variance for all the kernel terms, the proposed technique can tune both the mean vector and diagonal covariance matrix of individual kernel by incrementally maximizing Fisher ratio for class separability measure. An efficient weighted optimization method is developed based on boosting to append kernels one by one in an orthogonal forward selection procedure. Experimental results obtained using this construction technique demonstrate that it offers a viable alternative to the existing state-of-the-art kernel modeling methods for constructing sparse Gaussian radial basis function network classifiers. that generalize well.
Resumo:
In this work we study the computational complexity of a class of grid Monte Carlo algorithms for integral equations. The idea of the algorithms consists in an approximation of the integral equation by a system of algebraic equations. Then the Markov chain iterative Monte Carlo is used to solve the system. The assumption here is that the corresponding Neumann series for the iterative matrix does not necessarily converge or converges slowly. We use a special technique to accelerate the convergence. An estimate of the computational complexity of Monte Carlo algorithm using the considered approach is obtained. The estimate of the complexity is compared with the corresponding quantity for the complexity of the grid-free Monte Carlo algorithm. The conditions under which the class of grid Monte Carlo algorithms is more efficient are given.
Resumo:
Many kernel classifier construction algorithms adopt classification accuracy as performance metrics in model evaluation. Moreover, equal weighting is often applied to each data sample in parameter estimation. These modeling practices often become problematic if the data sets are imbalanced. We present a kernel classifier construction algorithm using orthogonal forward selection (OFS) in order to optimize the model generalization for imbalanced two-class data sets. This kernel classifier identification algorithm is based on a new regularized orthogonal weighted least squares (ROWLS) estimator and the model selection criterion of maximal leave-one-out area under curve (LOO-AUC) of the receiver operating characteristics (ROCs). It is shown that, owing to the orthogonalization procedure, the LOO-AUC can be calculated via an analytic formula based on the new regularized orthogonal weighted least squares parameter estimator, without actually splitting the estimation data set. The proposed algorithm can achieve minimal computational expense via a set of forward recursive updating formula in searching model terms with maximal incremental LOO-AUC value. Numerical examples are used to demonstrate the efficacy of the algorithm.
Resumo:
In this paper, we initiate the study of a class of Putnam-type equation of the form x(n-1) = A(1)x(n) + A(2)x(n-1) + A(3)x(n-2)x(n-3) + A(4)/B(1)x(n)x(n-1) + B(2)x(n-2) + B(3)x(n-3) + B-4 n = 0, 1, 2,..., where A(1), A(2), A(3), A(4), B-1, B-2, B-3, B-4 are positive constants with A(1) + A(2) + A(3) + A(4) = B-1 + B-2 + B-3 + B-4, x(-3), x(-2), x(-1), x(0) are positive numbers. A sufficient condition is given for the global asymptotic stability of the equilibrium point c = 1 of such equations. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
In this paper, we study the periodic oscillatory behavior of a class of bidirectional associative memory (BAM) networks with finite distributed delays. A set of criteria are proposed for determining global exponential periodicity of the proposed BAM networks, which assume neither differentiability nor monotonicity of the activation function of each neuron. In addition, our criteria are easily checkable. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
In this paper, we propose to study a class of neural networks with recent-history distributed delays. A sufficient condition is derived for the global exponential periodicity of the proposed neural networks, which has the advantage that it assumes neither the differentiability nor monotonicity of the activation function of each neuron nor the symmetry of the feedback matrix or delayed feedback matrix. Our criterion is shown to be valid by applying it to an illustrative system. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
We analyze a fully discrete spectral method for the numerical solution of the initial- and periodic boundary-value problem for two nonlinear, nonlocal, dispersive wave equations, the Benjamin–Ono and the Intermediate Long Wave equations. The equations are discretized in space by the standard Fourier–Galerkin spectral method and in time by the explicit leap-frog scheme. For the resulting fully discrete, conditionally stable scheme we prove an L2-error bound of spectral accuracy in space and of second-order accuracy in time.
Resumo:
One of the major differences undergraduates experience during the transition to university is the style of teaching. In schools and colleges most students study key stage 5 subjects in relatively small informal groups where teacher–pupil interaction is encouraged and two-way feedback occurs through question and answer type delivery. On starting in HE students are amazed by the sizes of the classes. For even a relatively small chemistry department with an intake of 60-70 students, biologists, pharmacists, and other first year undergraduates requiring chemistry can boost numbers in the lecture hall to around 200 or higher. In many universities class sizes of 400 are not unusual for first year groups where efficiency is crucial. Clearly the personalised classroom-style delivery is not practical and it is a brave student who shows his ignorance by venturing to ask a question in front of such an audience. In these environments learning can be a very passive process, the lecture acts as a vehicle for the conveyance of information and our students are expected to reinforce their understanding by ‘self-study’, a term, the meaning of which, many struggle to understand. The use of electronic voting systems (EVS) in such situations can vastly change the students’ learning experience from a passive to a highly interactive process. This principle has already been demonstrated in Physics, most notably in the work of Bates and colleagues at Edinburgh.1 These small hand-held devices, similar to those which have become familiar through programmes such as ‘Who Wants to be a Millionaire’ can be used to provide instant feedback to students and teachers alike. Advances in technology now allow them to be used in a range of more sophisticated settings and comprehensive guides on use have been developed for even the most techno-phobic staff.
Resumo:
We prove that all the eigenvalues of a certain highly non-self-adjoint Sturm–Liouville differential operator are real. The results presented are motivated by and extend those recently found by various authors (Benilov et al. (2003) [3], Davies (2007) [7] and Weir (2008) [18]) on the stability of a model describing small oscillations of a thin layer of fluid inside a rotating cylinder.
Resumo:
In a previous paper (J. of Differential Equations, Vol. 249 (2010), 3081-3098) we examined a family of periodic Sturm-Liouville problems with boundary and interior singularities which are highly non-self-adjoint but have only real eigenvalues. We now establish Schatten class properties of the associated resolvent operator.
Resumo:
A technique is derived for solving a non-linear optimal control problem by iterating on a sequence of simplified problems in linear quadratic form. The technique is designed to achieve the correct solution of the original non-linear optimal control problem in spite of these simplifications. A mixed approach with a discrete performance index and continuous state variable system description is used as the basis of the design, and it is shown how the global problem can be decomposed into local sub-system problems and a co-ordinator within a hierarchical framework. An analysis of the optimality and convergence properties of the algorithm is presented and the effectiveness of the technique is demonstrated using a simulation example with a non-separable performance index.