38 resultados para Circ-ILL meeting


Relevância:

20.00% 20.00%

Publicador:

Resumo:

As weather and climate models move toward higher resolution, there is growing excitement about potential future improvements in the understanding and prediction of atmospheric convection and its interaction with larger-scale phenomena. A meeting in January 2013 in Dartington, Devon was convened to address the best way to maximise these improvements, specifically in a UK context but with international relevance. Specific recommendations included increased convective-scale observations, high-resolution virtual laboratories, and a system of parameterization test beds with a range of complexities. The main recommendation was to facilitate the development of physically based convective parameterizations that are scale-aware, non-local, non-equilibrium, and stochastic.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Data assimilation (DA) systems are evolving to meet the demands of convection-permitting models in the field of weather forecasting. On 19 April 2013 a special interest group meeting of the Royal Meteorological Society brought together UK researchers looking at different aspects of the data assimilation problem at high resolution, from theory to applications, and researchers creating our future high resolution observational networks. The meeting was chaired by Dr Sarah Dance of the University of Reading and Dr Cristina Charlton-Perez from the MetOffice@Reading. The purpose of the meeting was to help define the current state of high resolution data assimilation in the UK. The workshop assembled three main types of scientists: observational network specialists, operational numerical weather prediction researchers and those developing the fundamental mathematical theory behind data assimilation and the underlying models. These three working areas are intrinsically linked; therefore, a holistic view must be taken when discussing the potential to make advances in high resolution data assimilation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we present a novel approach to detect people meeting. The proposed approach works by translating people behaviour from trajectory information into semantic terms. Having available a semantic model of the meeting behaviour, the event detection is performed in the semantic domain. The model is learnt employing a soft-computing clustering algorithm that combines trajectory information and motion semantic terms. A stable representation can be obtained from a series of examples. Results obtained on a series of videos with different types of meeting situations show that the proposed approach can learn a generic model that can effectively be applied on the behaviour recognition of meeting situations.