85 resultados para Chance-constrained optimisation
Resumo:
We introduce and describe the Multiple Gravity Assist problem, a global optimisation problem that is of great interest in the design of spacecraft and their trajectories. We discuss its formalization and we show, in one particular problem instance, the performance of selected state of the art heuristic global optimisation algorithms. A deterministic search space pruning algorithm is then developed and its polynomial time and space complexity derived. The algorithm is shown to achieve search space reductions of greater than six orders of magnitude, thus reducing significantly the complexity of the subsequent optimisation.
Resumo:
A new probabilistic neural network (PNN) learning algorithm based on forward constrained selection (PNN-FCS) is proposed. An incremental learning scheme is adopted such that at each step, new neurons, one for each class, are selected from the training samples arid the weights of the neurons are estimated so as to minimize the overall misclassification error rate. In this manner, only the most significant training samples are used as the neurons. It is shown by simulation that the resultant networks of PNN-FCS have good classification performance compared to other types of classifiers, but much smaller model sizes than conventional PNN.
Resumo:
We develop a particle swarm optimisation (PSO) aided orthogonal forward regression (OFR) approach for constructing radial basis function (RBF) classifiers with tunable nodes. At each stage of the OFR construction process, the centre vector and diagonal covariance matrix of one RBF node is determined efficiently by minimising the leave-one-out (LOO) misclassification rate (MR) using a PSO algorithm. Compared with the state-of-the-art regularisation assisted orthogonal least square algorithm based on the LOO MR for selecting fixednode RBF classifiers, the proposed PSO aided OFR algorithm for constructing tunable-node RBF classifiers offers significant advantages in terms of better generalisation performance and smaller model size as well as imposes lower computational complexity in classifier construction process. Moreover, the proposed algorithm does not have any hyperparameter that requires costly tuning based on cross validation.
Resumo:
The budgets of seven halogenated gases (CFC-11, CFC-12, CFC-113, CFC-114, CFC-115, CCl4 and SF6) are studied by comparing measurements in polar firn air from two Arctic and three Antarctic sites, and simulation results of two numerical models: a 2-D atmospheric chemistry model and a 1-D firn diffusion model. The first one is used to calculate atmospheric concentrations from emission trends based on industrial inventories; the calculated concentration trends are used by the second one to produce depth concentration profiles in the firn. The 2-D atmospheric model is validated in the boundary layer by comparison with atmospheric station measurements, and vertically for CFC-12 by comparison with balloon and FTIR measurements. Firn air measurements provide constraints on historical atmospheric concentrations over the last century. Age distributions in the firn are discussed using a Green function approach. Finally, our results are used as input to a radiative model in order to evaluate the radiative forcing of our target gases. Multi-species and multi-site firn air studies allow to better constrain atmospheric trends. The low concentrations of all studied gases at the bottom of the firn, and their consistency with our model results confirm that their natural sources are small. Our results indicate that the emissions, sinks and trends of CFC-11, CFC-12, CFC-113, CFC-115 and SF6 are well constrained, whereas it is not the case for CFC-114 and CCl4. Significant emission-dependent changes in the lifetimes of halocarbons destroyed in the stratosphere were obtained. Those result from the time needed for their transport from the surface where they are emitted to the stratosphere where they are destroyed. Efforts should be made to update and reduce the large uncertainties on CFC lifetimes.
Resumo:
This paper demonstrates that recent influential contributions to monetary policy imply an emerging consensus whereby neither rigid rules nor complete discretion are found optimal. Instead, middle-ground monetary regimes based on rules (operative under 'normal' circumstances) to anchor inflation expectations over the long run, but designed with enough flexibility to mitigate the short-run effect of shocks (with communicated discretion in 'exceptional' circumstances temporarily overriding these rules), are gaining support in theoretical models and policy formulation and implementation. The opposition of 'rules versus discretion' has, thus, reappeared as the synthesis of 'rules cum discretion', in essence as inflation-forecast targeting. But such synthesis is not without major theoretical problems, as we argue in this contribution. Furthermore, the very recent real-world events have made it obvious that the inflation targeting strategy of monetary policy, which rests upon the new consensus paradigm in modern macroeconomics is at best a 'fair weather' model. In the turbulent economic climate of highly unstable inflation, deep financial crisis and world-wide, abrupt economic slowdown nowadays this approach needs serious rethinking to say the least, if not abandoning it altogether
Resumo:
The past decade has witnessed explosive growth of mobile subscribers and services. With the purpose of providing better-swifter-cheaper services, radio network optimisation plays a crucial role but faces enormous challenges. The concept of Dynamic Network Optimisation (DNO), therefore, has been introduced to optimally and continuously adjust network configurations, in response to changes in network conditions and traffic. However, the realization of DNO has been seriously hindered by the bottleneck of optimisation speed performance. An advanced distributed parallel solution is presented in this paper, as to bridge the gap by accelerating the sophisticated proprietary network optimisation algorithm, while maintaining the optimisation quality and numerical consistency. The ariesoACP product from Arieso Ltd serves as the main platform for acceleration. This solution has been prototyped, implemented and tested. Real-project based results exhibit a high scalability and substantial acceleration at an average speed-up of 2.5, 4.9 and 6.1 on a distributed 5-core, 9-core and 16-core system, respectively. This significantly outperforms other parallel solutions such as multi-threading. Furthermore, augmented optimisation outcome, alongside high correctness and self-consistency, have also been fulfilled. Overall, this is a breakthrough towards the realization of DNO.
Resumo:
The increasing demand for cheaper-faster-better services anytime and anywhere has made radio network optimisation much more complex than ever before. In order to dynamically optimise the serving network, Dynamic Network Optimisation (DNO), is proposed as the ultimate solution and future trend. The realization of DNO, however, has been hindered by a significant bottleneck of the optimisation speed as the network complexity grows. This paper presents a multi-threaded parallel solution to accelerate complicated proprietary network optimisation algorithms, under a rigid condition of numerical consistency. ariesoACP product from Arieso Ltd serves as the platform for parallelisation. This parallel solution has been benchmarked and results exhibit a high scalability and a run-time reduction by 11% to 42% based on the technology, subscriber density and blocking rate of a given network in comparison with the original version. Further, it is highly essential that the parallel version produces equivalent optimisation quality in terms of identical optimisation outputs.
Resumo:
A key reason for pessimism with respect to greenhouse gas emissions reduction relates to the ‘motivation problem’, whereby those who could make the biggest difference prima facie have the least incentive to act because they are most able to adapt: how can we motivate such people (and thereby everyone else) to accept, indeed to initiate, the changes to their lifestyles that are required for effective emissions reductions? This paper offers an account inspired by Rawls of the good of membership of ‘intergenerational cooperative union’ to achieve justice that provides a solution to the motivation problem.
Resumo:
The blind minimum output energy (MOE) adaptive detector for code division multiple access (CDMA) signals requires exact knowledge of the received spreading code of the desired user. This requirement can be relaxed by constraining the so-called surplus energy of the adaptive tap-weight vector, but the ideal constraint value is not easily obtained in practice. An algorithm is proposed to adaptively track this value and hence to approach the best possible performance for this class of CDMA detector.
Resumo:
In most commercially available predictive control packages, there is a separation between economic optimisation and predictive control, although both algorithms may be part of the same software system. This method is compared in this article with two alternative approaches where the economic objectives are directly included in the predictive control algorithm. Simulations are carried out using the Tennessee Eastman process model.
Resumo:
DISOPE is a technique for solving optimal control problems where there are differences in structure and parameter values between reality and the model employed in the computations. The model reality differences can also allow for deliberate simplification of model characteristics and performance indices in order to facilitate the solution of the optimal control problem. The technique was developed originally in continuous time and later extended to discrete time. The main property of the procedure is that by iterating on appropriately modified model based problems the correct optimal solution is achieved in spite of the model-reality differences. Algorithms have been developed in both continuous and discrete time for a general nonlinear optimal control problem with terminal weighting, bounded controls and terminal constraints. The aim of this paper is to show how the DISOPE technique can aid receding horizon optimal control computation in nonlinear model predictive control.
Resumo:
A novel algorithm for solving nonlinear discrete time optimal control problems with model-reality differences is presented. The technique uses dynamic integrated system optimisation and parameter estimation (DISOPE) which achieves the correct optimal solution in spite of deficiencies in the mathematical model employed in the optimisation procedure. A new method for approximating some Jacobian trajectories required by the algorithm is introduced. It is shown that the iterative procedure associated with the algorithm naturally suits applications to batch chemical processes.