37 resultados para Carbon dioxide in the Atlantic Ocean
Resumo:
Observations and numerical modelling experiments provide evidence for links between variability in the Atlantic Meridional Overturning Circulation (AMOC) and global climate patterns. Reduction in the strength of the overturning circulation is thought to have played a key role in rapid climate change in the past and may have the potential to significantly influence climate change in the future, as noted in the last two IPCC assessment reports (2001, 2007). Both IPCC reports also highlighted the significant uncertainties that exist regarding the future behaviour of the AMOC under global warming. Model results suggest that changes in the AMOC can impact surface air temperature, precipitation patterns and sea level, particularly in areas bordering the North Atlantic, thus affecting human populations. Here current understanding of past, present and future change in the AMOC and the effects of such changes on climate are reviewed. The focus is on observations of the AMOC, how the AMOC influences climate and in what way the AMOC is likely to change over the next few decades and the 21st 34 century. The potential for decadal prediction of the AMOC is also discussed. Finally, the outstanding challenges and possible future directions for AMOC research are outlined.
Resumo:
[1] High-elevation forests represent a large fraction of potential carbon uptake in North America, but this uptake is not well constrained by observations. Additionally, forests in the Rocky Mountains have recently been severely damaged by drought, fire, and insect outbreaks, which have been quantified at local scales but not assessed in terms of carbon uptake at regional scales. The Airborne Carbon in the Mountains Experiment was carried out in 2007 partly to assess carbon uptake in western U.S. mountain ecosystems. The magnitude and seasonal change of carbon uptake were quantified by (1) paired upwind-downwind airborne CO2 observations applied in a boundary layer budget, (2) a spatially explicit ecosystem model constrained using remote sensing and flux tower observations, and (3) a downscaled global tracer transport inversion. Top-down approaches had mean carbon uptake equivalent to flux tower observations at a subalpine forest, while the ecosystem model showed less. The techniques disagreed on temporal evolution. Regional carbon uptake was greatest in the early summer immediately following snowmelt and tended to lessen as the region experienced dry summer conditions. This reduction was more pronounced in the airborne budget and inversion than in flux tower or upscaling, possibly related to lower snow water availability in forests sampled by the aircraft, which were lower in elevation than the tower site. Changes in vegetative greenness associated with insect outbreaks were detected using satellite reflectance observations, but impacts on regional carbon cycling were unclear, highlighting the need to better quantify this emerging disturbance effect on montane forest carbon cycling.
Resumo:
AOGCMs of the two latest phases (CMIP3 and CMIP5) of the Coupled Model Intercomparison Project, like earlier AOGCMs, predict large regional variations in future sea level change. The model-mean pattern of change in CMIP3 and CMIP5 is very similar, and its most prominent feature is a zonal dipole in the Southern Ocean: sea level rise is larger than the global mean north of 50°S and smaller than the global mean south of 50°S in most models. The individual models show widely varying patterns, although the inter-model spread in local sea level change is smaller in CMIP5 than in CMIP3. Here we investigate whether changes in windstress can explain the different patterns of projected sea level change, especially the Southern Ocean feature, using two AOGCMs forced by the changes in windstress from the CMIP3 and CMIP5 AOGCMs. We show that the strengthening and poleward shift of westerly windstress accounts for the most of the large spread among models in magnitude of this feature. In the Indian, North Pacific and Arctic Oceans, the windstress change is influential, but does not completely account for the projected sea level change.
Resumo:
The primary role of land surface models embedded in climate models is to partition surface available energy into upwards, radiative, sensible and latent heat fluxes. Partitioning of evapotranspiration, ET, is of fundamental importance: as a major component of the total surface latent heat flux, ET affects the simulated surface water balance, and related energy balance, and consequently the feedbacks with the atmosphere. In this context it is also crucial to credibly represent the CO2 exchange between ecosystems and their environment. In this study, JULES, the land surface model used in UK weather and climate models, has been evaluated for temperate Europe. Compared to eddy covariance flux measurements, the CO2 uptake by the ecosystem is underestimated and the ET overestimated. In addition, the contribution to ET from soil and intercepted water evaporation far outweighs the contribution of plant transpiration. To alleviate these biases, adaptations have been implemented in JULES, based on key literature references. These adaptations have improved the simulation of the spatio-temporal variability of the fluxes and the accuracy of the simulated GPP and ET, including its partitioning. This resulted in a shift of the seasonal soil moisture cycle. These adaptations are expected to increase the fidelity of climate simulations over Europe. Finally, the extreme summer of 2003 was used as evaluation benchmark for the use of the model in climate change studies. The improved model captures the impact of the 2003 drought on the carbon assimilation and the water use efficiency of the plants. It, however, underestimates the 2003 GPP anomalies. The simulations showed that a reduction of evaporation from the interception and soil reservoirs, albeit not of transpiration, largely explained the good correlation between the carbon and the water fluxes anomalies that was observed during 2003. This demonstrates the importance of being able to discriminate the response of individual component of the ET flux to environmental forcing.
Resumo:
Sources and sinks of gravitational potential energy (GPE) play a rate-limiting role in the large scale ocean circulation. A key source is turbulent diapycnal mixing, whereby irre- versible mixing across isoneutral surfaces is enhanced by turbulent straining of these surfaces. This has motivated international observational efforts to map diapycnal mixing in the global ocean. However, in order to accurately relate the GPE supplied to the large scale circulation by diapycnal mixing to the mixing energy source, it is first necessary to determine the ratio, ξ , of the GPE generation rate to the available potential energy dissipation rate associated with turbulent mixing. Here, the link between GPE and hydro- static pressure is used to derive the GPE budget for a com- pressible ocean with a nonlinear equation of state. The role of diapycnal mixing is isolated and from this a global cli- matological distribution of ξ is calculated. It is shown that, for a given source of mixing energy, typically three times as much GPE is generated if the mixing takes place in bottom waters rather than in the pycnocline. This is due to GPE destruction by cabbelling in the pycnocline, as opposed to thermobaric enhancement of GPE generation by diapycnal mixing in the deep ocean.
Resumo:
One of the prerequisites for achieving skill in decadal climate prediction is to initialize and predict the circulation in the Atlantic Ocean successfully. The RAPID array measures the Atlantic Meridional Overturning Circulation (MOC) at 26°N. Here we develop a method to include these observations in the Met Office Decadal Prediction System (DePreSys). The proposed method uses covariances of overturning transport anomalies at 26°N with ocean temperature and salinity anomalies throughout the ocean to create the density structure necessary to reproduce the observed transport anomaly. Assimilating transport alone in this way effectively reproduces the observed transport anomalies at 26°N and is better than using basin-wide temperature and salinity observations alone. However, when the transport observations are combined with in situ temperature and salinity observations in the analysis, the transport is not currently reproduced so well. The reasons for this are investigated using pseudo-observations in a twin experiment framework. Sensitivity experiments show that the MOC on monthly time-scales, at least in the HadCM3 model, is modulated by a mechanism where non-local density anomalies appear to be more important for transport variability at 26°N than local density gradients.
Resumo:
Conservation of water demands that meridional ocean and atmosphere freshwater transports (FWT) are of equal magnitude but opposite in direction. This suggests that the atmospheric FWT and its associated latent heat (LH) transport could be thought of as a \textquotedblleft coupled ocean/atmosphere mode\textquotedblright. But what is the true nature of this coupling? Is the ocean passive or active? Here we analyze a series of simulations with a coupled ocean-atmosphere-sea ice model employing highly idealized geometries but with markedly different coupled climates and patterns of ocean circulation. Exploiting streamfunctions in specific humidity coordinates for the atmosphere and salt coordinates for the ocean to represent FWT in their respective medium, we find that atmospheric FWT/LH transport is essentially independent of the ocean state. Ocean circulation and salinity distribution adjust to achieve a return freshwater pathway demanded of them by the atmosphere. So, although ocean and atmosphere FWTs are indeed coupled by mass conservation, the ocean is a passive component acting as a reservoir of freshwater.