38 resultados para Canadian clergy
Resumo:
This paper describes the energetics and zonal-mean state of the upward extension of the Canadian Middle Atmosphere Model, which extends from the ground to ~210 km. The model includes realistic parameterizations of the major physical processes from the ground up to the lower thermosphere and exhibits a broad spectrum of geophysical variability. The rationale for the extended model is to examine the nature of the physical and dynamical processes in the mesosphere/lower thermosphere (MLT) region without the artificial effects of an imposed sponge layer which can modify the circulation in an unrealistic manner. The zonal-mean distributions of temperature and zonal wind are found to be in reasonable agreement with observations in most parts of the model domain below ~150 km. Analysis of the global-average energy and momentum budgets reveals a balance between solar extreme ultraviolet heating and molecular diffusion and a thermally direct viscous meridional circulation above 130 km, with the viscosity coming from molecular diffusion and ion drag. Below 70 km, radiative equilibrium prevails in the global mean. In the MLT region between ~70 and 120 km, many processes contribute to the global energy budget. At solstice, there is a thermally indirect meridional circulation driven mainly by parameterized nonorographic gravity-wave drag. This circulation provides a net global cooling of up to 25 K d^-1.
Resumo:
The climatology of ozone produced by the Canadian Middle Atmosphere Model (CMAM) is presented. This three-dimensional global model incorporates the radiative feedbacks of ozone and water vapor calculated on-line with a photochemical module. This module includes a comprehensive gas-phase reaction set and a limited set of heterogeneous reactions to account for processes occurring on background sulphate aerosols. While transport is global, photochemistry is solved from about 400 hPa to the top of the model at ∼95 km. This approach provides a complete and comprehensive representation of transport, emission, and photochemistry of various constituents from the surface to the mesopause region. A comparison of model results with observations indicates that the ozone distribution and variability are in agreement with observations throughout most of the model domain. Column ozone annual variation is represented to within 5–10% of the observations except in the Southern Hemisphere for springtime high latitudes. The vertical ozone distribution is generally well represented by the model up to the mesopause region. Nevertheless, in the upper stratosphere, the model generally underestimates the amount of ozone as well as the latitudinal tilting of ozone isopleths at high latitude. Ozone variability is analyzed and compared with measurements. The comparison shows that the phase and amplitude of the seasonal variation as well as shorter timescale variations are well represented by the model at various latitudes and heights. Finally, the impact of incorporating ozone radiative feedback on the model climatology is isolated. It is found that the incorporation of ozone radiative feedback results in a cooling of ∼8 K in the summer stratopause region, which corrects a warm bias that results when climatological ozone is used.
Resumo:
The Canadian Middle Atmosphere Modelling (MAM) project is a collaboration between thé Atmospheric Environment Service (AES) of Environment Canada and several Canadian universities. Its goal is thé development of a comprehensive General Circulation Model of the troposphere-stratosphere-mesosphere System, starting from the AES/CCCma third-generation atmospheric General Circulation Model. This paper describes the basic features of the first-generation Canadian MAM and some aspects of its radiative-dynamical climatology. Standard first-order mean diagnostics are presented for monthly means and for the annual cycle of zonal-mean winds and temperatures. The mean meridional circulation is examined, and comparison is made between thé steady diabatic, downward controlled, and residual stream functions. It is found that downward control holds quite well in the monthly mean through most of the middle atmosphere, even during equinoctal periods. The relative roles of different drag processes in determining the mean downwelling over the wintertime polar middle stratosphere is examined, and the vertical structure of the drag is quantified.
Eventive and stative passives and copula selection in Canadian and American heritage speaker Spanish
Resumo:
Spanish captures the difference between eventive and stative passives via an obligatory choice between two copula; verbal passives take the copula ser and adjectival passives take the copula estar. In this study, we compare and contrast US and Canadian heritage speakers of Spanish on their knowledge of this difference in relation to copula choice in Spanish. The backgrounds of the target groups differ significantly from each other in that only one of them, the Canadian group, has grown up in a societal multilingual environment. We discuss the results as being supportive of two non-mutually exclusive explanation factors: (a) French facilitates (bootstraps) the acquisition of eventive and stative passives and/or (b) the US/Canadian HS differences (e.g. status of bilingualism and the languages at stake) is a reflection of the uniqueness of the language contact situations and the effects this has on the input HSS receive.
Resumo:
One of the most significant sources of greenhouse gas (GHG) emissions in Canada is the buildings sector, with over 30% of national energy end-use occurring in buildings. Energy use must be addressed to reduce emissions from the buildings sector, as nearly 70% of all Canada’s energy used in the residential sector comes from fossil sources. An analysis of GHG emissions from the existing residential building stock for the year 2010 has been conducted for six Canadian cities with different climates and development histories: Vancouver, Edmonton, Winnipeg, Toronto, Montreal, and Halifax. Variation across these cities is seen in their 2010 GHG emissions, due to climate, characteristics of the building stock, and energy conversion technologies, with Halifax having the highest per capita emissions at 5.55 tCO2e/capita and Montreal having the lowest at 0.32 tCO2e/capita. The importance of the provincial electricity grid’s carbon intensity is emphasized, along with era of construction, occupancy, floor area, and climate. Approaches to achieving deep emissions reductions include innovative retrofit financing and city level residential energy conservation by-laws; each region should seek location-appropriate measures to reduce energy demand within its residential housing stock, as well as associated GHG emissions.
Resumo:
We present cross-validation of remote sensing measurements of methane profiles in the Canadian high Arctic. Accurate and precise measurements of methane are essential to understand quantitatively its role in the climate system and in global change. Here, we show a cross-validation between three datasets: two from spaceborne instruments and one from a ground-based instrument. All are Fourier Transform Spectrometers (FTSs). We consider the Canadian SCISAT Atmospheric Chemistry Experiment (ACE)-FTS, a solar occultation infrared spectrometer operating since 2004, and the thermal infrared band of the Japanese Greenhouse Gases Observing Satellite (GOSAT) Thermal And Near infrared Sensor for carbon Observation (TANSO)-FTS, a nadir/off-nadir scanning FTS instrument operating at solar and terrestrial infrared wavelengths, since 2009. The ground-based instrument is a Bruker 125HR Fourier Transform Infrared (FTIR) spectrometer, measuring mid-infrared solar absorption spectra at the Polar Environment Atmospheric Research Laboratory (PEARL) Ridge Lab at Eureka, Nunavut (80° N, 86° W) since 2006. For each pair of instruments, measurements are collocated within 500 km and 24 h. An additional criterion based on potential vorticity values was found not to significantly affect differences between measurements. Profiles are regridded to a common vertical grid for each comparison set. To account for differing vertical resolutions, ACE-FTS measurements are smoothed to the resolution of either PEARL-FTS or TANSO-FTS, and PEARL-FTS measurements are smoothed to the TANSO-FTS resolution. Differences for each pair are examined in terms of profile and partial columns. During the period considered, the number of collocations for each pair is large enough to obtain a good sample size (from several hundred to tens of thousands depending on pair and configuration). Considering full profiles, the degrees of freedom for signal (DOFS) are between 0.2 and 0.7 for TANSO-FTS and between 1.5 and 3 for PEARL-FTS, while ACE-FTS has considerably more information (roughly 1° of freedom per altitude level). We take partial columns between roughly 5 and 30 km for the ACE-FTS–PEARL-FTS comparison, and between 5 and 10 km for the other pairs. The DOFS for the partial columns are between 1.2 and 2 for PEARL-FTS collocated with ACE-FTS, between 0.1 and 0.5 for PEARL-FTS collocated with TANSO-FTS or for TANSO-FTS collocated with either other instrument, while ACE-FTS has much higher information content. For all pairs, the partial column differences are within ± 3 × 1022 molecules cm−2. Expressed as median ± median absolute deviation (expressed in absolute or relative terms), these differences are 0.11 ± 9.60 × 10^20 molecules cm−2 (0.012 ± 1.018 %) for TANSO-FTS–PEARL-FTS, −2.6 ± 2.6 × 10^21 molecules cm−2 (−1.6 ± 1.6 %) for ACE-FTS–PEARL-FTS, and 7.4 ± 6.0 × 10^20 molecules cm−2 (0.78 ± 0.64 %) for TANSO-FTS–ACE-FTS. The differences for ACE-FTS–PEARL-FTS and TANSO-FTS–PEARL-FTS partial columns decrease significantly as a function of PEARL partial columns, whereas the range of partial column values for TANSO-FTS–ACE-FTS collocations is too small to draw any conclusion on its dependence on ACE-FTS partial columns.
Resumo:
Background Major Depressive Disorder (MDD) is among the most prevalent and disabling medical conditions worldwide. Identification of clinical and biological markers (“biomarkers”) of treatment response could personalize clinical decisions and lead to better outcomes. This paper describes the aims, design, and methods of a discovery study of biomarkers in antidepressant treatment response, conducted by the Canadian Biomarker Integration Network in Depression (CAN-BIND). The CAN-BIND research program investigates and identifies biomarkers that help to predict outcomes in patients with MDD treated with antidepressant medication. The primary objective of this initial study (known as CAN-BIND-1) is to identify individual and integrated neuroimaging, electrophysiological, molecular, and clinical predictors of response to sequential antidepressant monotherapy and adjunctive therapy in MDD. Methods CAN-BIND-1 is a multisite initiative involving 6 academic health centres working collaboratively with other universities and research centres. In the 16-week protocol, patients with MDD are treated with a first-line antidepressant (escitalopram 10–20 mg/d) that, if clinically warranted after eight weeks, is augmented with an evidence-based, add-on medication (aripiprazole 2–10 mg/d). Comprehensive datasets are obtained using clinical rating scales; behavioural, dimensional, and functioning/quality of life measures; neurocognitive testing; genomic, genetic, and proteomic profiling from blood samples; combined structural and functional magnetic resonance imaging; and electroencephalography. De-identified data from all sites are aggregated within a secure neuroinformatics platform for data integration, management, storage, and analyses. Statistical analyses will include multivariate and machine-learning techniques to identify predictors, moderators, and mediators of treatment response. Discussion From June 2013 to February 2015, a cohort of 134 participants (85 outpatients with MDD and 49 healthy participants) has been evaluated at baseline. The clinical characteristics of this cohort are similar to other studies of MDD. Recruitment at all sites is ongoing to a target sample of 290 participants. CAN-BIND will identify biomarkers of treatment response in MDD through extensive clinical, molecular, and imaging assessments, in order to improve treatment practice and clinical outcomes. It will also create an innovative, robust platform and database for future research.