48 resultados para CAPILLARY ELECTROPHORESIS-MASS SPECTROMETRY
Resumo:
In biological mass spectrometry (MS), two ionization techniques are predominantly employed for the analysis of larger biomolecules, such as polypeptides. These are nano-electrospray ionization [1, 2] (nanoESI) and matrix-assisted laser desorption/ionization [3, 4] (MALDI). Both techniques are considered to be “soft”, allowing the desorption and ionization of intact molecular analyte species and thus their successful mass-spectrometric analysis. One of the main differences between these two ionization techniques lies in their ability to produce multiply charged ions. MALDI typically generates singly charged peptide ions whereas nanoESI easily provides multiply charged ions, even for peptides as low as 1000 Da in mass. The production of highly charged ions is desirable as this allows the use of mass analyzers, such as ion traps (including orbitraps) and hybrid quadrupole instruments, which typically offer only a limited m/z range (< 2000–4000). It also enables more informative fragmentation spectra using techniques such as collisioninduced dissociation (CID) and electron capture/transfer dissociation (ECD/ETD) in combination with tandem MS (MS/MS). [5, 6] Thus, there is a clear advantage of using ESI in research areas where peptide sequencing, or in general, the structural elucidation of biomolecules by MS/MS is required. Nonetheless, MALDI with its higher tolerance to contaminants and additives, ease-of-operation, potential for highspeed and automated sample preparation and analysis as well as its MS imaging capabilities makes it an ionization technique that can cover bioanalytical areas for which ESI is less suitable. [7, 8] If these strengths could be combined with the analytical power of multiply charged ions, new instrumental configurations and large-scale proteomic analyses based on MALDI MS(/MS) would become feasible.
Resumo:
The functional food market is growing rapidly and membrane processing offers several advantages over conventional methods for separation, fractionation and recovery of bioactive components. The aim of the present study was to select a process that could be implemented easily on an industrial scale for the isolation of natural lactose-derived oligosaccharides (OS) from caprine whey, enabling the development of functional foods for clinical and infant nutrition. The most efficient process was the combination of a pre-treatment to eliminate proteins and fat, using an ultrafiltration (UF) membrane of 25 kDa molecular weight cut off (MWCO), followed by a tighter UF membrane with 1 kDa MWCO. Circa 90% of the carbohydrates recovered in the final retentate were OS. Capillary electrophoresis was used to evaluate the OS profile in this retentate. The combined membrane-processing system is thus a promising technique for obtaining natural concentrated OS from whey. Powered
Resumo:
Tremendous progress in plant proteomics driven by mass spectrometry (MS) techniques has been made since 2000 when few proteomics reports were published and plant proteomics was in its infancy. These achievements include the refinement of existing techniques and the search for new techniques to address food security, safety, and health issues. It is projected that in 2050, the world’s population will reach 9–12 billion people demanding a food production increase of 34–70% (FAO, 2009) from today’s food production. Provision of food in a sustainable and environmentally committed manner for such a demand without threatening natural resources, requires that agricultural production increases significantly and that postharvest handling and food manufacturing systems become more efficient requiring lower energy expenditure, a decrease in postharvest losses, less waste generation and food with longer shelf life. There is also a need to look for alternative protein sources to animal based (i.e., plant based) to be able to fulfill the increase in protein demands by 2050. Thus, plant biology has a critical role to play as a science capable of addressing such challenges. In this review, we discuss proteomics especially MS, as a platform, being utilized in plant biology research for the past 10 years having the potential to expedite the process of understanding plant biology for human benefits. The increasing application of proteomics technologies in food security, analysis, and safety is emphasized in this review. But, we are aware that no unique approach/technology is capable to address the global food issues. Proteomics-generated information/resources must be integrated and correlated with other omics-based approaches, information, and conventional programs to ensure sufficient food and resources for human development now and in the future.
Resumo:
Proteins from dromedary camel milk (CM) produced in Europe were separated and quantified by capillary electrophoresis (CE). CE analysis showed that camel milk lacks b-lactoglobulin and consists of high concentration of a-lactalbumin (2.01 ± 0.02 mg mL-1), lactoferrin (1.74 ± 0.06 mg mL-1) and serum albumin (0.46 ± 0.01 mg mL-1 ). Among caseins, the concentration of b-casein (12.78 ± 0.92 mg mL-1) was found the highest followed by a-casein (2.89 ± 0.29 mg mL-1) while k-casein represented only minor amount (1.67 ± 0.01 mg mL-1). These results were in agreement with sodium dodecyl sulphatepolyacrylamide gel electrophoresis patterns. Overall, CE offers a quick and reliable method for the determination of major CM proteins, which may be responsible for the many nutritional and health properties of CM.
Resumo:
A recently developed capillary electrophoresis (CE)-negative-ionisation mass spectrometry (MS) method was used to profile anionic metabolites in a microbial-host co-metabolism study. Urine samples from rats receiving antibiotics (penicillin G and streptomycin sulfate) for 0, 4, or 8 days were analysed. A quality control sample was measured repeatedly to monitor the performance of the applied CE-MS method. After peak alignment, relative standard deviations (RSDs) for migration time of five representative compounds were below 0.4 %, whereas RSDs for peak area were 7.9–13.5 %. Using univariate and principal component analysis of obtained urinary metabolic profiles, groups of rats receiving different antibiotic treatment could be distinguished based on 17 discriminatory compounds, of which 15 were downregulated and 2 were upregulated upon treatment. Eleven compounds remained down- or upregulated after discontinuation of the antibiotics administration, whereas a recovery effect was observed for others. Based on accurate mass, nine compounds were putatively identified; these included the microbial-mammalian co-metabolites hippuric acid and indoxyl sulfate. Some discriminatory compounds were also observed by other analytical techniques, but CE-MS uniquely revealed ten metabolites modulated by antibiotic exposure, including aconitic acid and an oxocholic acid. This clearly demonstrates the added value of CE-MS for nontargeted profiling of small anionic metabolites in biological samples.
Resumo:
Hydrophilic interaction chromatography–mass spectrometry (HILIC–MS) was used for anionic metabolic profiling of urine from antibiotic-treated rats to study microbial–host co-metabolism. Rats were treated with the antibiotics penicillin G and streptomycin sulfate for four or eight days and compared to a control group. Urine samples were collected at day zero, four and eight, and analyzed by HILIC–MS. Multivariate data analysis was applied to the urinary metabolic profiles to identify biochemical variation between the treatment groups. Principal component analysis found a clear distinction between those animals receiving antibiotics and the control animals, with twenty-nine discriminatory compounds of which twenty were down-regulated and nine up-regulated upon treatment. In the treatment group receiving antibiotics for four days, a recovery effect was observed for seven compounds after cessation of antibiotic administration. Thirteen discriminatory compounds could be putatively identified based on their accurate mass, including aconitic acid, benzenediol sulfate, ferulic acid sulfate, hippuric acid, indoxyl sulfate, penicillin G, phenol and vanillin 4-sulfate. The rat urine samples had previously been analyzed by capillary electrophoresis (CE) with MS detection and proton nuclear magnetic resonance (1H NMR) spectroscopy. Using CE–MS and 1H NMR spectroscopy seventeen and twenty-five discriminatory compounds were found, respectively. Both hippuric acid and indoxyl sulfate were detected across all three platforms. Additionally, eight compounds were observed with both HILIC–MS and CE–MS. Overall, HILIC–MS appears to be highly complementary to CE–MS and 1H NMR spectroscopy, identifying additional compounds that discriminate the urine samples from antibiotic-treated and control rats.
Resumo:
Platelets are small blood cells vital for hemostasis. Following vascular damage, platelets adhere to collagens and activate, forming a thrombus that plugs the wound and prevents blood loss. Stimulation of the platelet collagen receptor glycoprotein VI (GPVI) allows recruitment of proteins to receptor-proximal signaling complexes on the inner-leaflet of the plasma membrane. These proteins are often present at low concentrations; therefore, signaling-complex characterization using mass spectrometry is limited due to high sample complexity. We describe a method that facilitates detection of signaling proteins concentrated on membranes. Peripheral membrane proteins (reversibly associated with membranes) were eluted from human platelets with alkaline sodium carbonate. Liquid-phase isoelectric focusing and gel electrophoresis were used to identify proteins that changed in levels on membranes from GPVI-stimulated platelets. Immunoblot analysis verified protein recruitment to platelet membranes and subsequent protein phosphorylation was preserved. Hsp47, a collagen binding protein, was among the proteins identified and found to be exposed on the surface of GPVI-activated platelets. Inhibition of Hsp47 abolished platelet aggregation in response to collagen, while only partially reducing aggregation in response to other platelet agonists. We propose that Hsp47 may therefore play a role in hemostasis and thrombosis.
Resumo:
Proteins are commonly identified through enzymatic digestion and generation of short sequence tags or fingerprints of peptide masses by mass spectrometry. Separation methods, such as liquid chromatography and electrophoresis, are often used to fractionate complex protein or peptide mixtures and these separations also provide information on the different species, such as molecular weight and isoelectric point from electrophoresis and hydrophobicity in reversed-phase chromatography. These are also properties that can be predicted from amino acid sequences derived from genomic sequences and used in protein identification. This chapter reviews recently introduced methods based on retention time prediction to extract information from chromatographic separations and the applications to protein identification in organisms with small and large genomes. Novel data on retention time prediction of posttranslationally modified peptides is also presented.
Resumo:
Polarized epithelial cells are responsible for the vectorial transport of solutes and have a key role in maintaining body fluid and electrolyte homeostasis. Such cells contain structurally and functionally distinct plasma membrane domains. Brush border and basolateral membranes of renal and intestinal epithelial cells can be separated using a number of different separation techniques, which allow their different transport functions and receptor expressions to be studied. In this communication, we report a proteomic analysis of these two membrane segments, apical and basolateral, obtained from the rat renal cortex isolated by two different methods: differential centrifugation and free-flow electrophoresis. The study was aimed at assessing the nature of the major proteins isolated by these two separation techniques. Two analytical strategies were used: separation by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) at the protein level or by cation-exchange high-performance liquid chromatography (HPLC) after proteolysis (i.e., at the peptide level). Proteolytic peptides derived from the proteins present in gel pieces or from HPLC fractions after proteolysis were sequenced by on-line liquid chromatography-tandem mass spectrometry (LC-MS/MS). Several hundred proteins were identified in each membrane section. In addition to proteins known to be located at the apical and basolateral membranes, several novel proteins were also identified. In particular, a number of proteins with putative roles in signal transduction were identified in both membranes. To our knowledge, this is the first reported study to try and characterize the membrane proteome of polarized epithelial cells and to provide a data set of the most abundant proteins present in renal proximal tubule cell membranes.
Resumo:
In plant tissues the extracellular environment or apoplast, incorporating the cell wall, is a highly dynamic compartment with a role in many important plant processes including defence, development, signalling and assimilate partitioning. Soluble apoplast proteins from Arabidopsis thaliana, Triticum aestivum and Oryza sativa were separated by two-dimensional electrophoresis. The molecular weights and isoelectric points for the dominant proteins were established prior to excision, sequencing and identification by matrix-assisted laser-desorption ionisation time of flight mass spectrometry (MALDI - TOF MS). From the selected spots, 23 proteins from O. sativa and 25 proteins from A. thaliana were sequenced, of which nine identifications were made in O. sativa (39%) and 14 in A. thaliana (56%). This analysis revealed that: (i) patterns of proteins revealed by two-dimensional electrophoresis were different for each species indicating that speciation could occur at the level of the apoplast, (ii) of the proteins characterised many belonged to diverse families reflecting the multiple functions of the apoplast and (iii), a large number of the apoplast proteins could not be identified indicating that the majority of extracellular proteins are yet to be assigned. The principal proteins identified in the aqueous matrix of the apoplast were involved in defence, i.e. germin-like proteins or glucanases, and cell expansion, i.e. β-D-glucan glucohydrolases. This study has demonstrated that proteomic analysis can be used to resolve the apoplastic protein complement and to identify adaptive changes induced by environmental effectors.
Resumo:
Polarized epithelial cells are responsible for the vectorial transport of solutes and have a key role in maintaining body fluid and electrolyte homeostasis. Such cells contain structurally and functionally distinct plasma membrane domains. Brush border and basolateral membranes of renal and intestinal epithelial cells can be separated using a number of different separation techniques, which allow their different transport functions and receptor expressions to be studied. In this communication, we report a proteomic analysis of these two membrane segments, apical and basolateral, obtained from the rat renal cortex isolated by two different methods: differential centrifugation and free-flow electrophoresis. The study was aimed at assessing the nature of the major proteins isolated by these two separation techniques. Two analytical strategies were used: separation by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) at the protein level or by cation-exchange high-performance liquid chromatography (HPLC) after proteolysis (i.e., at the peptide level). Proteolytic peptides derived from the proteins present in gel pieces or from HPLC fractions after proteolysis were sequenced by on-line liquid chromatography-tandem mass spectrometry (LC-MS/MS). Several hundred proteins were identified in each membrane section. In addition to proteins known to be located at the apical and basolateral membranes, several novel proteins were also identified. In particular, a number of proteins with putative roles in signal transduction were identified in both membranes. To our knowledge, this is the first reported study to try and characterize the membrane proteome of polarized epithelial cells and to provide a data set of the most abundant proteins present in renal proximal tubule cell membranes.
Resumo:
Neuropathic pain may arise following peripheral nerve injury though the molecular mechanisms associated with this are unclear. We used proteomic profiling to examine changes in protein expression associated with the formation of hyper-excitable neuromas derived from rodent saphenous nerves. A two-dimensional difference gel electrophoresis ( 2D-DIGE) profiling strategy was employed to examine protein expression changes between developing neuromas and normal nerves in whole tissue lysates. We found around 200 proteins which displayed a > 1.75-fold change in expression between neuroma and normal nerve and identified 55 of these proteins using mass spectrometry. We also used immunoblotting to examine the expression of low-abundance ion channels Nav1.3, Nav1.8 and calcium channel alpha 2 delta-1 subunit in this model, since they have previously been implicated in neuronal hyperexcitability associated with neuropathic pain. Finally, S(35)methionine in vitro labelling of neuroma and control samples was used to demonstrate local protein synthesis of neuron-specific genes. A number of cytoskeletal proteins, enzymes and proteins associated with oxidative stress were up-regulated in neuromas, whilst overall levels of voltage-gated ion channel proteins were unaffected. We conclude that altered mRNA levels reported in the somata of damaged DRG neurons do not necessarily reflect levels of altered proteins in hyper-excitable damaged nerve endings. An altered repertoire of protein expression, local protein synthesis and topological re-arrangements of ion channels may all play important roles in neuroma hyper-excitability.
Resumo:
A method is described for the analysis of deuterated and undeuterated alpha-tocopherol in blood components using liquid chromatography coupled to an orthogonal acceleration time-of-flight (TOF) mass spectrometer. Optimal ionisation conditions for undeuterated (d0) and tri- and hexadeuterated (d3 or d6) alpha-tocopherol standards were found with negative ion mode electrospray ionisation. Each species produced an isotopically resolved single ion of exact mass. Calibration curves of pure standards were linear in the range tested (0-1.5 muM, 0-15 pmol injected). For quantification of d0 and d6 in blood components following a standard solvent extraction, a stable-isotope-labelled internal standard (d3-alpha-tocopherol) was employed. To counter matrix ion suppression effects, standard response curves were generated following identical solvent extraction procedures to those of the samples. Within-day and between-day precision were determined for quantification of d0- and d6-labelled alpha-tocopherol in each blood component and both averaged 3-10%. Accuracy was assessed by comparison with a standard high-performance liquid chromatography (HPLC) method, achieving good correlation (r(2) = 0.94), and by spiking with known concentrations of alpha-tocopherol (98% accuracy). Limits of detection and quantification were determined to be 5 and 50 fmol injected, respectively. The assay was used to measure the appearance and disappearance of deuterium-labelled alpha-tocopherol in human blood components following deuterium-labelled (d6) RRR-alpha-tocopheryl acetate ingestion. The new LC/TOFMS method was found to be sensitive, required small sample volumes, was reproducible and robust, and was capable of high throughput when large numbers of samples were generated. Copyright (C) 2003 John Wiley Sons, Ltd.
Resumo:
Puroindoline proteins were purified from selected UK-grown hexaploid wheats. Their identities were confirmed on the basis of capillary electrophoresis mobilities, relative molecular mass and N-terminal amino acid sequencing. Only one form of puroindoline-a protein was found in those varieties, regardless of endosperm texture. Three allelic forms of puroindoline-b protein were identified. Nucleotide sequencing of cDNA produced by RT-PCR of isolated mRNA indicated that these were the 'wild-type', found in soft wheats, puroindoline-b containing a Gly -> Ser amino acid substitution (position 46) and puroindoline-b containing a Trp -> Arg substitution (position 44). The latter two were found in hard wheats. Microheterogeneity, due to short extensions and/or truncations at the N-terminus and C-terminus, was detected for both puroindoline-a and puroindoline-b. The type of microheterogeneity observed was more consistent for puroindoline-a than for puroindoline-b, and may arise through slightly different post-translational processing pathways. A puroindoline-b allele corresponding to a Leu -> Pro substitution (position 60) was identified from the cDNA sequence of the hard variety Chablis, but no mature puroindoline-b protein was found in this or two other European varieties known to possess this puroindoline-b allele. Wheats possessing the puroindoline-b proteins with point mutations appeared to contain lower amounts of puroindoline protein. Such wheats have a hard endosperm texture, as do wheats from which puroindoline-a or puroindoline-b are absent. Our results suggest that point mutations in puroindoline-b genes may confer hard endosperm texture through accumulation of allelic forms of puroindoline-b proteins with altered functional properties and/or through lower amounts of puroindoline proteins.