38 resultados para Bushfire Prevention and Monitoring
Resumo:
In Situ preservation is a core strategy for the conservation and management of waterlogged remains at wetland sites. Inorganic and organic remains can, however, quickly become degraded, or lost entirely, as a result of chemical or hydrological changes. Monitoring is therefore crucial in identifying baseline data for a site, the extent of spatial and or temporal variability, and in evaluating the potential impacts of these variables on current and future In Situ preservation potential. Since August 2009, monthly monitoring has taken place at the internationally important Iron Age site of Glastonbury Lake Village in the Somerset Levels, UK. A spatial, stratigraphic, and analytical approach to the analysis of sediment horizons and monitoring of groundwater chemistry, redox potential, water table depth and soil moisture (using TDR) was used to characterize the site. Significant spatial and temporal variability has been identified, with results from water-table monitoring and some initial chemical analysis from Glastonbury presented here. It appears that during dry periods parts of this site are at risk from desiccation. Analysis of the chemical data, in addition to integrating the results from the other parameters, is ongoing, with the aim of clarifying the risk to the entire site.
Resumo:
Agriculture and food security are key sectors for intervention under climate change. Agricultural production is highly vulnerable even to 2C (low-end) predictions for global mean temperatures in 2100, with major implications for rural poverty and for both rural and urban food security. Agriculture also presents untapped opportunities for mitigation, given the large land area under crops and rangeland, and the additional mitigation potential of aquaculture. This paper presents a summary of current knowledge on options to support farmers, particularly smallholder farmers, in achieving food security through agriculture under climate change. Actions towards adaptation fall into two broad overlapping areas: (1) accelerated adaptation to progressive climate change over decadal time scales, for example integrated packages of technology, agronomy and policy options for farmers and food systems, and (2) better management of agricultural risks associated with increasing climate variability and extreme events, for example improved climate information services and safety nets. Maximization of agriculture’s mitigation potential will require investments in technological innovation and agricultural intensification linked to increased efficiency of inputs, and creation of incentives and monitoring systems that are inclusive of smallholder farmers. Food systems faced with climate change need urgent, broad-based action in spite of uncertainties.
Resumo:
It is currently estimated that over 370 million individuals have diabetes, making diabetes a major public health issue contributing significantly to global morbidity and mortality. The steep rise in diabetes prevalence over the past decades is attributable, in a large part, to lifestyle changes, with dietary habits and behaviour significant contributors. Despite the relatively wide availability of anti-diabetic medicine, it is lifestyle approaches that still remain the cornerstone of diabetes prevention and treatment. Glycemic index (GI) is a nutritional tool, which represents the glycemic response to carbohydrate ingestion. In light of the major impact of nutrition on diabetes pathophysiology, with the rising need to combat the escalating diabetes epidemic, this review will focus on the role of GI in glycemic control, the primary target of diabetic treatment and beyond. The review will present the evidence relating GI and diabetes treatment and prevention, as well as weight loss, weight maintenance and CVD risk factors.
Resumo:
Regenerative cardiovascular medicine is the frontline of 21st-century health care. Cell therapy trials using bone marrow progenitor cells documented that the approach is feasible, safe and potentially beneficial in patients with ischemic disease. However, cardiovascular prevention and rehabilitation strategies should aim to conserve the pristine healing capacity of a healthy organism as well as reactivate it under disease conditions. This requires an increased understanding of stem cell microenvironment and trafficking mechanisms. Engagement and disengagement of stem cells of the osteoblastic niche is a dynamic process, finely tuned to allow low amounts of cells move out of the bone marrow and into the circulation on a regular basis. The balance is altered under stress situations, like tissue injury or ischemia, leading to remarkably increased cell egression. Individual populations of circulating progenitor cells could give rise to mature tissue cells (e.g. endothelial cells or cardiomyocytes), while the majority may differentiate to leukocytes, affecting the environment of homing sites in a paracrine way, e.g. promoting endothelial survival, proliferation and function, as well as attenuating or enhancing inflammation. This review focuses on the dynamics of the stem cell niche in healthy and disease conditions and on therapeutic means to direct stem cell/progenitor cell mobilization and recruitment into improved tissue repair.
Resumo:
Producing according to enhanced farm animal welfare (FAW) standards increases costs along the livestock value chain, especially for monitoring certified animal friendly products. In the choice between public or private bodies for carrying out and monitoring certification, consumer preferences and trust play a role. We explore this issue by applying logit analysis involving socio-economic and psychometric variables to survey data from Italy. Results identify marked consumer preferences for public bodies and trust in stakeholders a key determinant.
Resumo:
Intercomparison and evaluation of the global ocean surface mixed layer depth (MLD) fields estimated from a suite of major ocean syntheses are conducted. Compared with the reference MLDs calculated from individual profiles, MLDs calculated from monthly mean and gridded profiles show negative biases of 10–20 m in early spring related to the re-stratification process of relatively deep mixed layers. Vertical resolution of profiles also influences the MLD estimation. MLDs are underestimated by approximately 5–7 (14–16) m with the vertical resolution of 25 (50) m when the criterion of potential density exceeding the 10-m value by 0.03 kg m−3 is used for the MLD estimation. Using the larger criterion (0.125 kg m−3) generally reduces the underestimations. In addition, positive biases greater than 100 m are found in wintertime subpolar regions when MLD criteria based on temperature are used. Biases of the reanalyses are due to both model errors and errors related to differences between the assimilation methods. The result shows that these errors are partially cancelled out through the ensemble averaging. Moreover, the bias in the ensemble mean field of the reanalyses is smaller than in the observation-only analyses. This is largely attributed to comparably higher resolutions of the reanalyses. The robust reproduction of both the seasonal cycle and interannual variability by the ensemble mean of the reanalyses indicates a great potential of the ensemble mean MLD field for investigating and monitoring upper ocean processes.
Resumo:
The human population is exposed to aluminium (Al) from diet, antacids and vaccine adjuvants, but frequent application of Al-based salts to the underarm as antiperspirant adds a high additional exposure directly to the local area of the human breast. Coincidentally the upper outer quadrant of the breast is where there is also a disproportionately high incidence of breast cysts and breast cancer. Al has been measured in human breast tissues/fluids at higher levels than in blood, and experimental evidence suggests that at physiologically relevant concentrations, Al can adversely impact on human breast epithelial cell biology. Gross cystic breast disease is the most common benign disorder of the breast and evidence is presented that Al may be a causative factor in formation of breast cysts. Evidence is also reviewed that Al can enable the development of multiple hallmarks associated with cancer in breast cells, in particular that it can cause genomic instability and inappropriate proliferation in human breast epithelial cells, and can increase migration and invasion of human breast cancer cells. In addition, Al is a metalloestrogen and oestrogen is a risk factor for breast cancer known to influence multiple hallmarks. The microenvironment is established as another determinant of breast cancer development and Al has been shown to cause adverse alterations to the breast microenvironment. If current useage patterns of Al-based antiperspirant salts contribute to causation of breast cysts and breast cancer, then reduction in exposure would offer a strategy for prevention, and regulatory review is now justified.