39 resultados para Burst oxidativo
Resumo:
The orientation of the Interplanetary Magnetic Field (IMF) during transient bursts of ionospheric flow and auroral activity in the dayside auroral ionosphere is studied, using data from the EISCAT radar, meridian-scanning photometers, and an all-sky TV camera, in conjunction with simultaneous observations of the interplanetary medium by the IMP-8 satellite. It is found that the ionospheric flow and auroral burst events occur regularly (mean repetition period equal to 8.3 ± 0.6 min) during an initial period of about 45 min when the IMF is continuously and strongly southward in GSM coordinates, consistent with previous observations of the occurrence of transient dayside auroral activity. However, in the subsequent 1.5 h, the IMF was predominantly northward, and only made brief excursions to a southward orientation. During this period, the mean interval between events increased to 19.2 ± 1.7 min. If it is assumed that changes in the North-South component of the IMF are aligned with the IMF vector in the ecliptic plane, the delays can be estimated between such a change impinging upon IMP-8 and the response in the cleft ionosphere within the radar field-of-view. It is found that, to within the accuracy of this computed lag, each transient ionospheric event during the period of predominantly northward IMF can be associated with a brief, isolated southward excursion of the IMF, as observed by IMP-8. From this limited period of data, we therefore suggest that transient momentum exchange between the magnetosheath and the ionosphere occurs quasi-periodically when the IMF is continuously southward, with a mean period which is strikingly similar to that for Flux Transfer Events (FTEs) at the magnetopause. During periods of otherwise northward IMF, individual momentum transfer events can be triggered by brief swings to southward IMF. Hence under the latter conditions the periodicity of the events can reflect a periodicity in the IMF, but that period will always be larger than the minimum value which occurs when the IMF is strongly and continuously southward.
Resumo:
Observations by the EISCAT experiments “POLAR” and Common Programme CP-3 reveal non-Maxwellian ion velocity distributions in the auroral F-region ionosphere. Analysis of data from three periods is presented. During the first period, convection velocities are large (≈2 km s-1) and constant over part of a CP-3 latitude scan; the second period is one of POLAR data containing a short-lived (<1 min.) burst of rapid (>1.5 km s-1) flow. We concentrate on these two periods as they allow the study of a great many features of the ion-neutral interactions which drive the plasma non-thermal and provide the best available experimental test for models of the 3-dimensional ion velocity distribution function. The third period is included to illustrate the fact that non-thermal plasma frequently exists in the auroral ionosphere: the data, also from the POLAR experiment, cover a three-hour period of typical auroral zone flow and analysis reveals that the ion distribution varies from Maxwellian to the threshold of a toroidal form.
Resumo:
The contribution to the field-aligned ionospheric ion momentum equation, due to coupling between pressure anisotropy and the inhomogeneous geomagnetic field, is investigated. We term this contribution the “hydrodynamic mirror force” and investigate its dependence on the ion drift and the resulting deformations of the ion velocity distribution function from an isotropic form. It is shown that this extra upforce increases rapidly with ion drift relative to the neutral gas but is not highly dependent on the ion-neutral collision model employed. An example of a burst of flow observed by EISCAT, thought to be the ionospheric signature of a flux transfer event at the magnetopause, is studied in detail and it is shown that the nonthermal plasma which results is subject to a hydrodynamic mirror force which is roughly 10% of the gravitational downforce. In addition, predictions by the coupled University College London-Sheffield University model of the ionosphere and thermosphere show that the hydrodynamic mirror force in the auroral oval is up to 3% of the gravitational force for Kp of about 3, rising to 10% following a sudden increase in cross-cap potential. The spatial distribution of the upforce shows peaks in the cusp region and in the post-midnight auroral oval, similar to that of observed low-energy heavy ion flows from the ionosphere into the magnetosphere. We suggest the hydrodynamic mirror force may modulate these outflows by controlling the supply of heavy ions to regions of ion acceleration and that future simulations of the effects of Joule heating on ion outflows should make allowance for it.
Resumo:
We present a first overview of flows in the high latitude ionosphere observed at 15 s resolution using the U.K.-Polar EISCAT experiment. Data are described from experiments conducted on two days, 27 October 1984 and 29 August 1985, which together span the local times between about 0200 and 2130MLT and cover five different regions of ionospheric flow. With increasing local time, these are: the dawn auroral zone flow cell, the dayside region of low background flows equatorward of the flow cells, the dusk auroral zone flow cell, the boundary region between the dusk auroral zone and the polar cap, and the evening polar cap. Flows in both the equatorward and poleward portions of the auroral zone cells appear to be relatively smooth, while in the central region of high speed flow considerable variations are generally present. These have the form of irregular fluctuations on a wide range of time scales in the early morning dawn cell, and impulsive wave-like variations with periods of a few minutes in the afternoon dusk cell. In the dayside region between the flow cells, the ionosphere is often essentially stagnant for long intervals, but low amplitude ULF waves with a period of about 5 min can also occur and persist for many cycles. These conditions are punctuated at one to two hour intervals by sudden ‘flow burst’ events with impulsively generated damped wave trains. Initial burst flows are generally directed poleward and can peak at line-of-sight speeds in excess of 1 km s^{−1} after perhaps 45 s. Flows in the polar cap are reasonably smooth on time scales of a few minutes and show no evidence for the presence of ULF waves. Under most, but not all, of the above conditions, the beam-swinging algorithm used to determine background vector flows should produce meaningful results. Comparison of these flow data with simultaneous plasma and magnetic field measurements in the solar wind, made by the AMPTE IRM and UKS spacecraft, emphasizes the strong control exerted on high latitude flows by the north-south component of the IMF.
Resumo:
Recent observations from the EISCAT incoherent scatter radar have revealed bursts of poleward ion flow in the dayside auroral ionosphere which are consistent with the ionospheric signature of flux transfer events at the magnetopause. These bursts frequently contain ion drifts which exceed the neutral thermal speed and, because the neutral thermospheric wind is incapable of responding sufficiently rapidly, toroidal, non-Maxwellian ion velocity distributions are expected. The EISCAT observations are made with high time resolution (15 seconds) and at a large angle to the geomagnetic field (73.5°), allowing the non-Maxwellian nature of the distribution to be observed remotely for the first time. The observed features are also strongly suggestive of a toroidal distribution: characteristic spectral shape, increased scattered power (both consistent with reduced Landau damping and enhanced electric field fluctuations) and excessively high line-of-sight ion temperatures deduced if a Maxwellian distribution is assumed. These remote sensing observations allow the evolution of the distributions to be observed. They are found to be non-Maxwellian whenever the ion drift exceeds the neutral thermal speed, indicating that such distributions can exist over the time scale of the flow burst events (several minutes).
Resumo:
Data from the Dynamics Explorer 1 satellite and the EISCAT and Sondrestrom incoherent scatter radars, have allowed a study of low-energy ion outflows from the ionosphere into the magnetosphere during a rapid expansion of the polar cap. From the combined radar data, a 200kV increase in cross-cap potential is estimated. The upflowing ions show “X” signatures in the pitch angle-time spectrograms in the expanding midnight sector of the auroral oval. These signatures reveal low-energy (below about 60eV), light-ion beams sandwiched between two regions of ion conics and are associated with inverted-V electron precipitation. The lack of mass dispersion of the poleward edge of the event, despite great differences in the times of flight, reflects the equatorward expansion of the acceleration regions at velocities similar to those of the antisunward convection. In addition, a transient burst of upflow of 0+ is observed within the cap, possibly due to enhanced Joule heating during the event.
Resumo:
This paper surveys the results of simultaneous observations by the EISCAT incoherent scatter radar and the AMPTE-UKS satellite, made during three periods in September and October 1984, when AMPTE-UKS was in the solar wind on the dayside of the Earth and the UK-POLAR EISCAT experiment was measuring ionospheric parameters at invariant latitudes 70.8–75.0°. A total of 42 h of EISCAT convection velocity data, with 2.5 min resolution, were obtained, together with 28 h of simultaneous 5 s resolution AMPTE-UKS observations of the solar wind and interplanetary magnetic field (IMF). The general features of the AMPTE-UKS data are described in Section 2 and those of the EISCAT data are described in Sections 3 and 4. The main subjects discussed are the form of the plasma convection patterns and their dependence on all three components of the IMF (Section 5), the ionospheric response to abrupt changes in the IMF (Section 6), in particular a sharp ‘southward turning’ of the IMF on 27 October 1984, and a crossing of an IMF sector boundary. Section 7 describes ‘short lived rapid flow burst’, which are believed to be related to flux transfer events at the magnetopause.
Resumo:
Monolayers of neurons and glia have been employed for decades as tools for the study of cellular physiology and as the basis for a variety of standard toxicological assays. A variety of three dimensional (3D) culture techniques have been developed with the aim to produce cultures that recapitulate desirable features of intact. In this study, we investigated the effect of preparing primary mouse mixed neuron and glial cultures in the inert 3D scaffold, Alvetex. Using planar multielectrode arrays, we compared the spontaneous bioelectrical activity exhibited by neuroglial networks grown in the scaffold with that seen in the same cells prepared as conventional monolayer cultures. Two dimensional (monolayer; 2D) cultures exhibited a significantly higher spike firing rate than that seen in 3D cultures although no difference was seen in total signal power (<50 Hz) while pharmacological responsiveness of each culture type to antagonism of GABAAR, NMDAR and AMPAR was highly comparable. Interestingly, correlation of burst events, spike firing and total signal power (<50 Hz) revealed that local field potential events were associated with action potential driven bursts as was the case for 2D cultures. Moreover, glial morphology was more physiologically normal in 3D cultures. These results show that 3D culture in inert scaffolds represents a more physiologically normal preparation which has advantages for physiological, pharmacological, toxicological and drug development studies, particularly given the extensive use of such preparations in high throughput and high content systems.
Resumo:
Westerly wind bursts (WWBs) that occur in the western tropical Pacific are believed to play an important role in the development of El Niño events. Here, following the study of Lengaigne et al. (Clim Dyn 23(6):601–620, 2004), we conduct numerical simulations in which we reexamine the response of the climate system to an observed wind burst added to a coupled general circulation model. Two sets of twin ensemble experiments are conducted (each set has control and perturbed experiments). In the first set, the initial ocean heat content of the system is higher than the model climatology (recharged), while in the second set it is nearly normal (neutral). For the recharged state, in the absence of WWBs, a moderate El Niño with a maximum warming in the central Pacific (CP) develops in about a year. In contrast, for the neutral state, there develops a weak La Niña. However, when the WWB is imposed, the situation dramatically changes: the recharged state slides into an El Niño with a maximum warming in the eastern Pacific, while the neutral set produces a weak CP El Niño instead of previous La Niña conditions. The different response of the system to the exact same perturbations is controlled by the initial state of the ocean and the subsequent ocean–atmosphere interactions involving the interplay between the eastward shift of the warm pool and the warming of the eastern equatorial Pacific. Consequently, the observed diversity of El Niño, including the occurrence of extreme events, may depend on stochastic atmospheric processes, modulating El Niño properties within a broad continuum.