39 resultados para Brachyspira isolates
Resumo:
Avian intestinal spirochaetosis (AIS) results from the colonization of the caeca and colon of poultry by pathogenic Brachyspira, notably Brachyspira pilosicoli. Following the ban on the use of antibiotic growth promoters in the European Union in 2006, the number of cases of AIS has increased, which, alongside emerging antimicrobial resistance in Brachyspira, has driven renewed interest in alternative intervention strategies. Lactobacillus-based probiotics have been shown to protect against infection with common enteric pathogens in livestock. Our previous studies have shown that Lactobacillus reuteri LM1 antagonizes aspects of the pathobiology of Brachyspira in vitro. Here, we showed that L. reuteri LM1 mitigates the clinical symptoms of AIS in chickens experimentally challenged with B. pilosicoli. Two groups of 15 commercial laying hens were challenged experimentally by oral gavage with B. pilosicoli B2904 at 18 weeks of age; one group received unsupplemented drinking water and the other received L. reuteri LM1 in drinking water from 1 week prior to challenge with Brachyspira and thereafter for the duration of the study. This treatment regime was protective. Specifically, B. pilosicoli was detected by culture in fewer birds, bird weights were higher, faecal moisture contents were significantly lower (P<0.05) and egg production as assessed by egg weight and faecal staining score was improved (P<0.05). Also, at post-mortem examination, significantly fewer B. pilosicoli were recovered from treated birds (P<0.05), with only mild–moderate histopathological changes observed. These data suggest that L. reuteri LM1 may be a useful tool in the control of AIS.
Resumo:
The presence of 10 virulence genes was examined using polymerase chain reaction (PCR) in 365 European O157 and non-O157 Escherichia coli isolates associated with verotoxin production. Strain-specific PCR data were analysed using hierarchical clustering. The resulting dendrogram clearly separated O157 from non-O157 strains. The former clustered typical high-risk seropathotype (SPT) A strains from all regions, including Sweden and Spain, which were homogenous by Cramer's V statistic, and strains with less typical O157 features mostly from Hungary. The non-O157 strains divided into a high-risk SPTB harbouring O26, O111 and O103 strains, a group pathogenic to pigs, and a group with few virulence genes other than for verotoxin. The data demonstrate SPT designation and selected PCR separated verotoxigenic E. coli of high and low risk to humans; although more virulence genes or pulsed-field gel electrophoresis will need to be included to separate high-risk strains further for epidemiological tracing.
Resumo:
The putative virulence and antimicrobial resistance gene contents of extended spectrum β-lactamase (ESBL)-positive E. coli (n=629) isolated between 2005 and 2009 from humans, animals and animal food products in Germany, The Netherlands and the UK were compared using a microarray approach to test the suitability of this approach with regard to determining their similarities. A selection of isolates (n=313) were also analysed by multilocus sequence typing (MLST). Isolates harbouring blaCTX-M-group-1 dominated (66%, n=418) and originated from both animals and cases of human infections in all three countries; 23% (n=144) of all isolates contained both blaCTX-M-group-1 and blaOXA-1-like genes, predominantly from humans (n=127) and UK cattle (n=15). The antimicrobial resistance and virulence gene profiles of this collection of isolates were highly diverse. A substantial number of human isolates (32%, n=87) did not share more than 40% similarity (based on the Jaccard coefficient) with animal isolates. A further 43% of human isolates from the three countries (n=117) were at least 40% similar to each other and to five isolates from UK cattle and one each from Dutch chicken meat and a German dog; the members of this group usually harboured genes such as mph(A), mrx, aac(6’)-Ib, catB3, blaOXA-1-like and blaCTX-M-group-1. forty-four per cent of the MLST-typed isolates in this group belonged to ST131 (n=18) and 22% to ST405 (n=9), all from humans. Among animal isolates subjected to MLST (n=258), only 1.2% (n=3) were more than 70% similar to human isolates in gene profiles and shared the same MLST clonal complex with the corresponding human isolates. The results suggest that minimising human-to-human transmission is essential to control the spread of ESBL-positive E. coli in humans.
Resumo:
This study monitored the dynamics and diversity of the human faecal 'Atopobium cluster' over a 3-month period using a polyphasic approach. Fresh faecal samples were collected fortnightly from 13 healthy donors (6 males and 7 females) aged between 26 and 61 years. Fluorescence in situ hybridization was used to enumerate total (EUB338mix) and 'Atopobium cluster' (ATO291) bacteria, with counts ranging between 1.12 × 1011 and 9.95 × 1011, and 1.03 × 109 and 1.16 × 1011 cells (g dry weight faeces)-1, respectively. The 'Atopobium cluster' population represented 0.2-22 % of the total bacteria, with proportions donor-dependent. Denaturing gradient gel electrophoresis (DGGE) using 'Atopobium cluster'-specific primers demonstrated faecal populations of these bacteria were relatively stable, with bands identified as Collinsella aerofaciens, Collinsella intestinalis/Collinsella stercoris, Collinsella tanakaei, Coriobacteriaceae sp. PEAV3-3, Eggerthella lenta, Gordonibacter pamelaeae, Olsenella profusa, Olsenella uli and Paraeggerthella hongkongensis in the DGGE profiles of individuals. Colony PCR was used to identify 'Atopobium cluster' bacteria isolated from faeces (n = 224 isolates). 16S rRNA gene sequence analysis of isolates demonstrated Collinsella aerofaciens represented the predominant (88 % of isolates) member of the 'Atopobium cluster' found in human faeces, being found in nine individuals. Eggerthella lenta was identified in three individuals (3.6 % of isolates). Isolates of Collinsella tanakaei, an 'Enorma' sp. and representatives of novel species belonging to the 'Atopobium cluster' were also identified in the study. Phenotypic characterization of the isolates demonstrated their highly saccharolytic nature and heterogeneous phenotypic profiles, and 97 % of the isolates displayed lipase activity.
Resumo:
Avian intestinal spirochaetosis (AIS) caused by Brachyspira spp., and notably Brachyspira pilosicoli, is common in layer flocks and reportedly of increasing incidence in broilers and broiler breeders. Disease manifests as diar- rhoea, increased feed consumption, reduced growth rates and occasional mortality in broilers and these signs are shown in layers also associated with a delayed onset of lay, reduced egg weights, faecal staining of eggshells and non-productive ovaries. Treatment with Denagard® Tiamulin has been used to protect against B. pilosicoli colonisation, persistence and clinical presentation of AIS in commercial layers, but to date there has been no de- finitive study validating efficacy. Here, we used a poultry model of B. pilosicoli infection of layers to compare the impact of three doses of Denagard® Tiamulin. Four groups of thirty 17 week old commercial pre-lay birds were all challenged with B. pilosicoli strain B2904 with three oral doses two days apart. All birds were colonised within 2 days after the final oral challenge and mild onset of clinical signs were observed thereafter. A fifth group that was unchallenged and untreated was also included for comparison as healthy birds. Five days after the final oral Brachypira challenge three groups were given Denagard® Tiamulin in drinking water made up following the manufacturer's recommendations with doses verified as 58.7 ppm, 113 ppm and 225 ppm. Weight gain body condition and the level of diarrhoea of birds infected with B. pilosicoli were improved and shedding of the organism reduced significantly (p = 0.001) following treatment with Denagard® Tiamulin irrespective of dose given. The level and duration of colonisation of organs of birds infected with B. pilosicoli was also reduced. Confirming previous findings we showed that the ileum, caeca, colon, and both liver and spleen were colonised and here we demonstrated that treatment with Denagard® Tiamulin resulted in significant reduction in the numbers of Brachyspira found in each of these sites and dramatic reduction in faecal shedding (p b 0.001) to ap- proaching zero as assessed by culture of cloacal swabs. Although the number of eggs produced per bird and the level of eggshell staining appeared unaffected, egg weights of treated birds were greater than those of untreated birds for a period of approximately two weeks following treatment. These data conclusively demonstrate the ef- fectiveness of Denagard® Tiamulin in reducing B. pilosicoli infection in laying hens.
Resumo:
Avian intestinal spirochaetosis (AIS) caused by Brachyspira spp., and notably Brachyspira pilosicoli, is common in layer flocks and reportedly of increasing incidence in broilers and broiler breeders. Disease manifests as diarrhoea,increased feed consumption, reduced growth rates and occasional mortality in broilers and these signs are shown in layers also associated with a delayed onset of lay, reduced egg weights, faecal staining of eggshells and non-productive ovaries. Treatment with Denagard® Tiamulin has been used to protect against B. pilosicoli colonisation, persistence and clinical presentation of AIS in commercial layers, but to date there has been no definitive study validating efficacy. Here, we used a poultry model of B. pilosicoli infection of layers to compare the impact of three doses of Denagard® Tiamulin. Four groups of thirty 17 week old commercial pre-lay birds were all challengedwith B. pilosicoli strain B2904with three oral doses two days apart. All birdswere colonised within 2 days after the final oral challenge and mild onset of clinical signs were observed thereafter. A fifth group that was unchallenged and untreated was also included for comparison as healthy birds. Five days after the final oral Brachypira challenge three groups were given Denagard® Tiamulin in drinking water made up following the manufacturer's recommendations with doses verified as 58.7 ppm, 113 ppm and 225 ppm. Weight gain body condition and the level of diarrhoea of birds infected with B. pilosicoli were improved and shedding of the organism reduced significantly (p = 0.001) following treatment with Denagard® Tiamulin irrespective of dose given. The level and duration of colonisation of organs of birds infected with B. pilosicoli was also reduced. Confirming previous findings we showed that the ileum, caeca, colon, and both liver and spleen were colonised and here we demonstrated that treatment with Denagard® Tiamulin resulted in significant reduction in the numbers of Brachyspira found in each of these sites and dramatic reduction in faecal shedding (p b 0.001) to approaching zero as assessed by culture of cloacal swabs. Although the number of eggs produced per bird and the level of eggshell staining appeared unaffected, egg weights of treated birds were greater than those of untreated birds for a period of approximately two weeks following treatment. These data conclusively demonstrate the effectiveness of Denagard® Tiamulin in reducing B. pilosicoli infection in laying hens.
Resumo:
Avian intestinal spirochetosis (AIS) is a common disease occurring in poultry that can be caused by Brachyspira pilosicoli, a Gram-negative bacterium of the order Spirochaetes. During AIS, this opportunistic pathogen colonises the lower gastrointestinal (GI) tract of poultry (principally the ileum, caeca and colon), which can cause symptoms such as diarrhoea, reduced growth rate and reduced egg production and quality. Due to the large increase of bacterial resistance to antibiotic treatment, the European Union banned in 2006 the prophylactic use of antibiotics as growth promoters in livestock. Consequently, the number of outbreaks of AIS has dramatically increased in the UK resulting in significant economic losses. This review summaries the current knowledge about AIS infection caused by B. pilosicoli and discusses various treatments and prevention strategies to control AIS.
Resumo:
The slow-growing genus Bradyrhizobium is biologically important in soils, with different representatives found to perform a range of biochemical functions including photosynthesis, induction of root nodules and symbiotic nitrogen fixation and denitrification. Consequently, the role of the genus in soil ecology and biogeochemical transformations is of agricultural and environmental significance. Some isolates of Bradyrhizobium have been shown to be non-symbiotic and do not possess the ability to form nodules. Here we present the genome and gene annotations of two such free-living Bradyrhizobium isolates, named G22 and BF49, from soils with differing long-term management regimes (grassland and bare fallow respectively) in addition to carbon metabolism analysis. These Bradyrhizobium isolates are the first to be isolated and sequenced from European soil and are the first free-living Bradyrhizobium isolates, lacking both nodulation and nitrogen fixation genes, to have their genomes sequenced and assembled from cultured samples. The G22 and BF49 genomes are distinctly different with respect to size and number of genes; the grassland isolate also contains a plasmid. There are also a number of functional differences between these isolates and other published genomes, suggesting that this ubiquitous genus is extremely heterogeneous and has roles within the community not including symbiotic nitrogen fixation.