69 resultados para Bounds


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this study was, within a sensitivity analysis framework, to determine if additional model complexity gives a better capability to model the hydrology and nitrogen dynamics of a small Mediterranean forested catchment or if the additional parameters cause over-fitting. Three nitrogen-models of varying hydrological complexity were considered. For each model, general sensitivity analysis (GSA) and Generalized Likelihood Uncertainty Estimation (GLUE) were applied, each based on 100,000 Monte Carlo simulations. The results highlighted the most complex structure as the most appropriate, providing the best representation of the non-linear patterns observed in the flow and streamwater nitrate concentrations between 1999 and 2002. Its 5% and 95% GLUE bounds, obtained considering a multi-objective approach, provide the narrowest band for streamwater nitrogen, which suggests increased model robustness, though all models exhibit periods of inconsistent good and poor fits between simulated outcomes and observed data. The results confirm the importance of the riparian zone in controlling the short-term (daily) streamwater nitrogen dynamics in this catchment but not the overall flux of nitrogen from the catchment. It was also shown that as the complexity of a hydrological model increases over-parameterisation occurs, but the converse is true for a water quality model where additional process representation leads to additional acceptable model simulations. Water quality data help constrain the hydrological representation in process-based models. Increased complexity was justifiable for modelling river-system hydrochemistry. Increased complexity was justifiable for modelling river-system hydrochemistry.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

CO, O3, and H2O data in the upper troposphere/lower stratosphere (UTLS) measured by the Atmospheric Chemistry Experiment Fourier Transform Spectrometer(ACE-FTS) on Canada’s SCISAT-1 satellite are validated using aircraft and ozonesonde measurements. In the UTLS, validation of chemical trace gas measurements is a challenging task due to small-scale variability in the tracer fields, strong gradients of the tracers across the tropopause, and scarcity of measurements suitable for validation purposes. Validation based on coincidences therefore suffers from geophysical noise. Two alternative methods for the validation of satellite data are introduced, which avoid the usual need for coincident measurements: tracer-tracer correlations, and vertical tracer profiles relative to tropopause height. Both are increasingly being used for model validation as they strongly suppress geophysical variability and thereby provide an “instantaneous climatology”. This allows comparison of measurements between non-coincident data sets which yields information about the precision and a statistically meaningful error-assessment of the ACE-FTS satellite data in the UTLS. By defining a trade-off factor, we show that the measurement errors can be reduced by including more measurements obtained over a wider longitude range into the comparison, despite the increased geophysical variability. Applying the methods then yields the following upper bounds to the relative differences in the mean found between the ACE-FTS and SPURT aircraft measurements in the upper troposphere (UT) and lower stratosphere (LS), respectively: for CO ±9% and ±12%, for H2O ±30% and ±18%, and for O3 ±25% and ±19%. The relative differences for O3 can be narrowed down by using a larger dataset obtained from ozonesondes, yielding a high bias in the ACEFTS measurements of 18% in the UT and relative differences of ±8% for measurements in the LS. When taking into account the smearing effect of the vertically limited spacing between measurements of the ACE-FTS instrument, the relative differences decrease by 5–15% around the tropopause, suggesting a vertical resolution of the ACE-FTS in the UTLS of around 1 km. The ACE-FTS hence offers unprecedented precision and vertical resolution for a satellite instrument, which will allow a new global perspective on UTLS tracer distributions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Climate models provide compelling evidence that if greenhouse gas emissions continue at present rates, then key global temperature thresholds (such as the European Union limit of two degrees of warming since pre-industrial times) are very likely to be crossed in the next few decades. However, there is relatively little attention paid to whether, should a dangerous temperature level be exceeded, it is feasible for the global temperature to then return to safer levels in a usefully short time. We focus on the timescales needed to reduce atmospheric greenhouse gases and associated temperatures back below potentially dangerous thresholds, using a state-of-the-art general circulation model. This analysis is extended with a simple climate model to provide uncertainty bounds. We find that even for very large reductions in emissions, temperature reduction is likely to occur at a low rate. Policy-makers need to consider such very long recovery timescales implicit in the Earth system when formulating future emission pathways that have the potential to 'overshoot' particular atmospheric concentrations of greenhouse gases and, more importantly, related temperature levels that might be considered dangerous.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The evaluation of the quality and usefulness of climate modeling systems is dependent upon an assessment of both the limited predictability of the climate system and the uncertainties stemming from model formulation. In this study a methodology is presented that is suited to assess the performance of a regional climate model (RCM), based on its ability to represent the natural interannual variability on monthly and seasonal timescales. The methodology involves carrying out multiyear ensemble simulations (to assess the predictability bounds within which the model can be evaluated against observations) and multiyear sensitivity experiments using different model formulations (to assess the model uncertainty). As an example application, experiments driven by assimilated lateral boundary conditions and sea surface temperatures from the ECMWF Reanalysis Project (ERA-15, 1979–1993) were conducted. While the ensemble experiment demonstrates that the predictability of the regional climate varies strongly between different seasons and regions, being weakest during the summer and over continental regions, important sensitivities of the modeling system to parameterization choices are uncovered. In particular, compensating mechanisms related to the long-term representation of the water cycle are revealed, in which summer dry and hot conditions at the surface, resulting from insufficient evaporation, can persist despite insufficient net solar radiation (a result of unrealistic cloud-radiative feedbacks).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigate for 26 OECD economies whether their current account imbalances to GDP are driven by stochastic trends. Regarding bounded stationarity as the more natural counterpart of sustainability, results from Phillips–Perron tests for unit root and bounded unit root processes are contrasted. While the former hint at stationarity of current account imbalances for 12 economies, the latter indicate bounded stationarity for only six economies. Through panel-based test statistics, current account imbalances are diagnosed as bounded non-stationary. Thus, (spurious) rejections of the unit root hypothesis might be due to the existence of bounds reflecting hidden policy controls or financial crises.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We consider an equilibrium birth and death type process for a particle system in infinite volume, the latter is described by the space of all locally finite point configurations on Rd. These Glauber type dynamics are Markov processes constructed for pre-given reversible measures. A representation for the ``carré du champ'' and ``second carré du champ'' for the associate infinitesimal generators L are calculated in infinite volume and for a large class of functions in a generalized sense. The corresponding coercivity identity is derived and explicit sufficient conditions for the appearance and bounds for the size of the spectral gap of L are given. These techniques are applied to Glauber dynamics associated to Gibbs measure and conditions are derived extending all previous known results and, in particular, potentials with negative parts can now be treated. The high temperature regime is extended essentially and potentials with non-trivial negative part can be included. Furthermore, a special class of potentials is defined for which the size of the spectral gap is as least as large as for the free system and, surprisingly, the spectral gap is independent of the activity. This type of potentials should not show any phase transition for a given temperature at any activity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study is concerned with how the attractor dimension of the two-dimensional Navier–Stokes equations depends on characteristic length scales, including the system integral length scale, the forcing length scale, and the dissipation length scale. Upper bounds on the attractor dimension derived by Constantin, Foias and Temam are analysed. It is shown that the optimal attractor-dimension estimate grows linearly with the domain area (suggestive of extensive chaos), for a sufficiently large domain, if the kinematic viscosity and the amplitude and length scale of the forcing are held fixed. For sufficiently small domain area, a slightly “super-extensive” estimate becomes optimal. In the extensive regime, the attractor-dimension estimate is given by the ratio of the domain area to the square of the dissipation length scale defined, on physical grounds, in terms of the average rate of shear. This dissipation length scale (which is not necessarily the scale at which the energy or enstrophy dissipation takes place) can be identified with the dimension correlation length scale, the square of which is interpreted, according to the concept of extensive chaos, as the area of a subsystem with one degree of freedom. Furthermore, these length scales can be identified with a “minimum length scale” of the flow, which is rigorously deduced from the concept of determining nodes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Minneapolis Domestic Violence Experiment (MDVE) is a randomized social experiment with imperfect compliance which has been extremely influential in how police officers respond to misdemeanor domestic violence. This paper re-examines data from the MDVE, using recent literature on partial identification to find recidivism associated with a policy that arrests misdemeanor domestic violence suspects rather than not arresting them. Using partially identified bounds on the average treatment effect I find that arresting rather than not arresting suspects can potentially reduce recidivism by more than two-and-a-half times the corresponding intent-to-treat estimate and more than two times the corresponding local average treatment effect, even when making minimal assumptions on counterfactuals.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We consider the numerical treatment of second kind integral equations on the real line of the form ∅(s) = ∫_(-∞)^(+∞)▒〖κ(s-t)z(t)ϕ(t)dt,s=R〗 (abbreviated ϕ= ψ+K_z ϕ) in which K ϵ L_1 (R), z ϵ L_∞ (R) and ψ ϵ BC(R), the space of bounded continuous functions on R, are assumed known and ϕ ϵ BC(R) is to be determined. We first derive sharp error estimates for the finite section approximation (reducing the range of integration to [-A, A]) via bounds on (1-K_z )^(-1)as an operator on spaces of weighted continuous functions. Numerical solution by a simple discrete collocation method on a uniform grid on R is then analysed: in the case when z is compactly supported this leads to a coefficient matrix which allows a rapid matrix-vector multiply via the FFT. To utilise this possibility we propose a modified two-grid iteration, a feature of which is that the coarse grid matrix is approximated by a banded matrix, and analyse convergence and computational cost. In cases where z is not compactly supported a combined finite section and two-grid algorithm can be applied and we extend the analysis to this case. As an application we consider acoustic scattering in the half-plane with a Robin or impedance boundary condition which we formulate as a boundary integral equation of the class studied. Our final result is that if z (related to the boundary impedance in the application) takes values in an appropriate compact subset Q of the complex plane, then the difference between ϕ(s)and its finite section approximation computed numerically using the iterative scheme proposed is ≤C_1 [kh log⁡〖(1⁄kh)+(1-Θ)^((-1)⁄2) (kA)^((-1)⁄2) 〗 ] in the interval [-ΘA,ΘA](Θ<1) for kh sufficiently small, where k is the wavenumber and h the grid spacing. Moreover this numerical approximation can be computed in ≤C_2 N log⁡N operations, where N = 2A/h is the number of degrees of freedom. The values of the constants C1 and C2 depend only on the set Q and not on the wavenumber k or the support of z.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper is concerned with the problem of propagation from a monofrequency coherent line source above a plane of homogeneous surface impedance. The solution of this problem occurs in the kernel of certain boundary integral equation formulations of acoustic propagation above an impedance boundary, and the discussion of the paper is motivated by this application. The paper starts by deriving representations, as Laplace-type integrals, of the solution and its first partial derivatives. The evaluation of these integral representations by Gauss-Laguerre quadrature is discussed, and theoretical bounds on the truncation error are obtained. Specific approximations are proposed which are shown to be accurate except in the very near field, for all angles of incidence and a wide range of values of surface impedance. The paper finishes with derivations of partial results and analogous Laplace-type integral representations for the case of a point source.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

e consider integral equations on the half-line of the form and the finite section approximation to x obtained by replacing the infinite limit of integration by the finite limit β. We establish conditions under which, if the finite section method is stable for the original integral equation (i.e. exists and is uniformly bounded in the space of bounded continuous functions for all sufficiently large β), then it is stable also for a perturbed equation in which the kernel k is replaced by k + h. The class of perturbations allowed includes all compact and some non-compact perturbations of the integral operator. Using this result we study the stability and convergence of the finite section method in the space of continuous functions x for which ()()()=−∫∞dttxt,sk)s(x0()syβxβx()sxsp+1 is bounded. With the additional assumption that ()(tskt,sk−≤ where ()()(),qsomefor,sassOskandRLkq11>+∞→=∈− we show that the finite-section method is stable in the weighted space for ,qp≤≤0 provided it is stable on the space of bounded continuous functions. With these results we establish error bounds in weighted spaces for x - xβ and precise information on the asymptotic behaviour at infinity of x. We consider in particular the case when the integral operator is a perturbation of a Wiener-Hopf operator and illustrate this case with a Wiener-Hopf integral equation arising in acoustics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A nonlinear symmetric stability theorem is derived in the context of the f-plane Boussinesq equations, recovering an earlier result of Xu within a more general framework. The theorem applies to symmetric disturbances to a baroclinic basic flow, the disturbances having arbitrary structure and magnitude. The criteria for nonlinear stability are virtually identical to those for linear stability. As in Xu, the nonlinear stability theorem can be used to obtain rigorous upper bounds on the saturation amplitude of symmetric instabilities. In a simple example, the bounds are found to compare favorably with heuristic parcel-based estimates in both the hydrostatic and non-hydrostatic limits.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nonlinear stability theorems analogous to Arnol'd's second stability theorem are established for continuously stratified quasi-geostrophic flow with general nonlinear boundary conditions in a vertically and horizontally confined domain. Both the standard quasi-geostrophic model and the modified quasi-geostrophic model (incorporating effects of hydrostatic compressibility) are treated. The results establish explicit upper bounds on the disturbance energy, the disturbance potential enstrophy, and the disturbance available potential energy on the horizontal boundaries, in terms of the initial disturbance fields. Nonlinear stability in the sense of Liapunov is also established.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A nonlinear stability theorem is established for Eady's model of baroclinic flow. In particular, the Eady basic state is shown to be nonlinearly stable (for arbitrary shear) provided (Δz)/(Δy) > 2(5)^1/2f/(πN),where Δz is the height of the domain, Δy the channel width, f the Coriolis parameter, and N the buoyancy frequency. When this criterion is satisfied, explicit bounds can be derived on the disturbance potential enstrophy, the disturbance energy, and the disturbance available potential energy on the rigid lids, which are expressed in terms of the initial disturbance fields. The disturbances are completely general (with nonzero potential vorticity) and are not assumed to be of small amplitude. The results may be regarded as an extension of Arnol'd's second nonlinear stability theorem to continuously stratified quasigeostrophic baroclinic flow.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

New nonlinear stability theorems are derived for disturbances to steady basic flows in the context of the multilayer quasi-geostrophic equations. These theorems are analogues of Arnol’d's second stability theorem, the latter applying to the two-dimensional Euler equations. Explicit upper bounds are obtained on both the disturbance energy and disturbance potential enstrophy in terms of the initial disturbance fields. An important feature of the present analysis is that the disturbances are allowed to have non-zero circulation. While Arnol’d's stability method relies on the energy–Casimir invariant being sign-definite, the new criteria can be applied to cases where it is sign-indefinite because of the disturbance circulations. A version of Andrews’ theorem is established for this problem, and uniform potential vorticity flow is shown to be nonlinearly stable. The special case of two-layer flow is treated in detail, with particular attention paid to the Phillips model of baroclinic instability. It is found that the short-wave portion of the marginal stability curve found in linear theory is precisely captured by the new nonlinear stability criteria.