147 resultados para Bayesian inference on precipitation


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Idealized, convection-resolving simulations of moist orographic flows are conducted to investigate the influence of temperature and moist stability on the drying ratio (DR), defined as the fraction of the impinging water mass removed as orographic precipitation. In flow past a long ridge, where most of the air rises over the barrier rather than detouring around it, DR decreases as the surface temperature (Ts) increases, even as the orographic cap cloud becomes statically unstable at higher Ts and develops embedded convection. This behaviour is explained by a few physical principles: (1) the Clausius–Clapeyron equation dictates that the normalized condensation rate decreases as the flow gets warmer, (2) the replacement of ice-phase precipitation growth with warm-rain processes decreases the efficiency by which condensate is converted to precipitation, thereby lowering precipitation efficiency, and (3) embedded convection acts more to vertically redistribute moisture than to enhance precipitation. Over an isolated mountain, the effects of (1) and (2) are counteracted by moisture deflection around the barrier, which is stronger in the colder, more stable flows.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A regional climate model is used to investigate changes in Israel and Jordan precipitation at the end of the 21st century on daily to monthly timescales. The model predicts that this region will get significantly drier at the peak of the rainy season, reflecting a reduction in both the frequency and duration of rainy events. These changes may be associated with a reduction in the strength of the Mediterranean storm track

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Global climate change and its impacts are being increasingly studied and precipitation trends are one of the measures of quantifying climate change especially in the tropics. This study uses daily rainfall data to determine if there are changes in the long-term trends in rainfall variability in the East Coast Mountains of Mauritius during the last few decades, and to investigate the factors influencing the trends in the inter-annual to inter-decadal rainfall variability. Statistical modelling has been used to investigate the trends in total seasonal rainfall, the number of rain days and the mean amount of rain per rainy days and the local, regional and large-scale factors that affect them on inter-annual to inter-decadal time scales. The strongest inter-decadal trend was found in the number of rain days for both rainfall seasons, and the other variables were found to have weak or insignificant trends. Both local factors, such as the surrounding sea surface temperatures and large-scale phenomena such as Indian Monsoon and the El Niño Southern Oscillation were found to influence rainfall patterns.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper, Bayesian decision procedures are developed for dose-escalation studies based on bivariate observations of undesirable events and signs of therapeutic benefit. The methods generalize earlier approaches taking into account only the undesirable outcomes. Logistic regression models are used to model the two responses, which are both assumed to take a binary form. A prior distribution for the unknown model parameters is suggested and an optional safety constraint can be included. Gain functions to be maximized are formulated in terms of accurate estimation of the limits of a therapeutic window or optimal treatment of the next cohort of subjects, although the approach could be applied to achieve any of a wide variety of objectives. The designs introduced are illustrated through simulation and retrospective implementation to a completed dose-escalation study. Copyright © 2006 John Wiley & Sons, Ltd.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Recently, various approaches have been suggested for dose escalation studies based on observations of both undesirable events and evidence of therapeutic benefit. This article concerns a Bayesian approach to dose escalation that requires the user to make numerous design decisions relating to the number of doses to make available, the choice of the prior distribution, the imposition of safety constraints and stopping rules, and the criteria by which the design is to be optimized. Results are presented of a substantial simulation study conducted to investigate the influence of some of these factors on the safety and the accuracy of the procedure with a view toward providing general guidance for investigators conducting such studies. The Bayesian procedures evaluated use logistic regression to model the two responses, which are both assumed to be binary. The simulation study is based on features of a recently completed study of a compound with potential benefit to patients suffering from inflammatory diseases of the lung.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Genetic data obtained on population samples convey information about their evolutionary history. Inference methods can extract part of this information but they require sophisticated statistical techniques that have been made available to the biologist community (through computer programs) only for simple and standard situations typically involving a small number of samples. We propose here a computer program (DIY ABC) for inference based on approximate Bayesian computation (ABC), in which scenarios can be customized by the user to fit many complex situations involving any number of populations and samples. Such scenarios involve any combination of population divergences, admixtures and population size changes. DIY ABC can be used to compare competing scenarios, estimate parameters for one or more scenarios and compute bias and precision measures for a given scenario and known values of parameters (the current version applies to unlinked microsatellite data). This article describes key methods used in the program and provides its main features. The analysis of one simulated and one real dataset, both with complex evolutionary scenarios, illustrates the main possibilities of DIY ABC.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The rate at which a given site in a gene sequence alignment evolves over time may vary. This phenomenon-known as heterotachy-can bias or distort phylogenetic trees inferred from models of sequence evolution that assume rates of evolution are constant. Here, we describe a phylogenetic mixture model designed to accommodate heterotachy. The method sums the likelihood of the data at each site over more than one set of branch lengths on the same tree topology. A branch-length set that is best for one site may differ from the branch-length set that is best for some other site, thereby allowing different sites to have different rates of change throughout the tree. Because rate variation may not be present in all branches, we use a reversible-jump Markov chain Monte Carlo algorithm to identify those branches in which reliable amounts of heterotachy occur. We implement the method in combination with our 'pattern-heterogeneity' mixture model, applying it to simulated data and five published datasets. We find that complex evolutionary signals of heterotachy are routinely present over and above variation in the rate or pattern of evolution across sites, that the reversible-jump method requires far fewer parameters than conventional mixture models to describe it, and serves to identify the regions of the tree in which heterotachy is most pronounced. The reversible-jump procedure also removes the need for a posteriori tests of 'significance' such as the Akaike or Bayesian information criterion tests, or Bayes factors. Heterotachy has important consequences for the correct reconstruction of phylogenies as well as for tests of hypotheses that rely on accurate branch-length information. These include molecular clocks, analyses of tempo and mode of evolution, comparative studies and ancestral state reconstruction. The model is available from the authors' website, and can be used for the analysis of both nucleotide and morphological data.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Stephens and Donnelly have introduced a simple yet powerful importance sampling scheme for computing the likelihood in population genetic models. Fundamental to the method is an approximation to the conditional probability of the allelic type of an additional gene, given those currently in the sample. As noted by Li and Stephens, the product of these conditional probabilities for a sequence of draws that gives the frequency of allelic types in a sample is an approximation to the likelihood, and can be used directly in inference. The aim of this note is to demonstrate the high level of accuracy of "product of approximate conditionals" (PAC) likelihood when used with microsatellite data. Results obtained on simulated microsatellite data show that this strategy leads to a negligible bias over a wide range of the scaled mutation parameter theta. Furthermore, the sampling variance of likelihood estimates as well as the computation time are lower than that obtained with importance sampling on the whole range of theta. It follows that this approach represents an efficient substitute to IS algorithms in computer intensive (e.g. MCMC) inference methods in population genetics. (c) 2006 Elsevier Inc. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Biologists frequently attempt to infer the character states at ancestral nodes of a phylogeny from the distribution of traits observed in contemporary organisms. Because phylogenies are normally inferences from data, it is desirable to account for the uncertainty in estimates of the tree and its branch lengths when making inferences about ancestral states or other comparative parameters. Here we present a general Bayesian approach for testing comparative hypotheses across statistically justified samples of phylogenies, focusing on the specific issue of reconstructing ancestral states. The method uses Markov chain Monte Carlo techniques for sampling phylogenetic trees and for investigating the parameters of a statistical model of trait evolution. We describe how to combine information about the uncertainty of the phylogeny with uncertainty in the estimate of the ancestral state. Our approach does not constrain the sample of trees only to those that contain the ancestral node or nodes of interest, and we show how to reconstruct ancestral states of uncertain nodes using a most-recent-common-ancestor approach. We illustrate the methods with data on ribonuclease evolution in the Artiodactyla. Software implementing the methods ( BayesMultiState) is available from the authors.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We describe and evaluate a new estimator of the effective population size (N-e), a critical parameter in evolutionary and conservation biology. This new "SummStat" N-e. estimator is based upon the use of summary statistics in an approximate Bayesian computation framework to infer N-e. Simulations of a Wright-Fisher population with known N-e show that the SummStat estimator is useful across a realistic range of individuals and loci sampled, generations between samples, and N-e values. We also address the paucity of information about the relative performance of N-e estimators by comparing the SUMMStat estimator to two recently developed likelihood-based estimators and a traditional moment-based estimator. The SummStat estimator is the least biased of the four estimators compared. In 32 of 36 parameter combinations investigated rising initial allele frequencies drawn from a Dirichlet distribution, it has the lowest bias. The relative mean square error (RMSE) of the SummStat estimator was generally intermediate to the others. All of the estimators had RMSE > 1 when small samples (n = 20, five loci) were collected a generation apart. In contrast, when samples were separated by three or more generations and Ne less than or equal to 50, the SummStat and likelihood-based estimators all had greatly reduced RMSE. Under the conditions simulated, SummStat confidence intervals were more conservative than the likelihood-based estimators and more likely to include true N-e. The greatest strength of the SummStat estimator is its flexible structure. This flexibility allows it to incorporate any, potentially informative summary statistic from Population genetic data.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The Bryaceae are a large cosmopolitan family of mosses containing genera of considerable taxonomic difficulty. Phylogenetic relationships within the family were inferred using data from chloroplast DNA sequences (rps4 and trnL-trnF region). Parsimony and maximum likelihood optimality criteria, and Bayesian phylogenetic inference procedures were employed to reconstruct relationships. The genera Bryum and Brachymenium are not monophyletic groups. A clade comprising Plagiobryum, Acidodontium, Mielichhoferia macrocarpa, Bryum sects. Bryum, Apalodictyon, Limbata, Leucodontium, Caespiticia, Capillaria (in part: sect. Capillaria), and Brachymenium sect. Dicranobryum, is well supported in all analyses and represents a major lineage within the family. Section Dicranobryum of Brachymenium is more closely related to section Bryum than to the other sections of Brachymenium, as are Mielichhoferia macrocarpa and M. himalayana. Species of Acidodontium form a clade with Anomobryum julaceum. The grouping of species with a rosulate gametophytic growth form suggests the presence of a 'rosulate' clade similar in circumscription to the genus Rosulabryum. Mielichhoferia macrocarpa and M. himalayana are transferred to Bryum as B. porsildii and B. caucasicum, respectively.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Most factorial experiments in industrial research form one stage in a sequence of experiments and so considerable prior knowledge is often available from earlier stages. A Bayesian A-optimality criterion is proposed for choosing designs, when each stage in experimentation consists of a small number of runs and the objective is to optimise a response. Simple formulae for the weights are developed, some examples of the use of the design criterion are given and general recommendations are made. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A new Bayesian algorithm for retrieving surface rain rate from Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) over the ocean is presented, along with validations against estimates from the TRMM Precipitation Radar (PR). The Bayesian approach offers a rigorous basis for optimally combining multichannel observations with prior knowledge. While other rain-rate algorithms have been published that are based at least partly on Bayesian reasoning, this is believed to be the first self-contained algorithm that fully exploits Bayes’s theorem to yield not just a single rain rate, but rather a continuous posterior probability distribution of rain rate. To advance the understanding of theoretical benefits of the Bayesian approach, sensitivity analyses have been conducted based on two synthetic datasets for which the “true” conditional and prior distribution are known. Results demonstrate that even when the prior and conditional likelihoods are specified perfectly, biased retrievals may occur at high rain rates. This bias is not the result of a defect of the Bayesian formalism, but rather represents the expected outcome when the physical constraint imposed by the radiometric observations is weak owing to saturation effects. It is also suggested that both the choice of the estimators and the prior information are crucial to the retrieval. In addition, the performance of the Bayesian algorithm herein is found to be comparable to that of other benchmark algorithms in real-world applications, while having the additional advantage of providing a complete continuous posterior probability distribution of surface rain rate.