53 resultados para BINDING SITES


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Isothermal titration microcalorimetry (ITC) has been applied to investigate protein-tannin interactions. Two hydrolyzable tannins were studied, namely myrabolan and tara tannins, for their interaction with bovine serum albumin (BSA), a model globular protein, and gelatin, a model proline-rich random coil protein. Calorimetry data indicate that protein-tannin interaction mechanisms are dependent upon the nature of the protein involved. Tannins apparently interact nonspecifically with the globular BSA, leading to binding saturation at estimated tannin/BSA molar ratios of 48:1 for tara- and 178:1 for myrabolan tannins. Tannins bind to the random coil protein gelatin by a two-stage mechanism. The energetics of the first stage show evidence for cooperative binding of tannins to the protein, while the second stage indicates gradual saturation of binding sites as observed for interaction with BSA. The structure and flexibility of the tannins themselves alters the stoichiometry of the interaction, but does not appear to have any significant affect on the overall binding mechanism observed. This study demonstrates the potential of ITC for providing an insight into the nature of protein-tannin interactions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Acetylcholinesterase (AChE) activity was measured in Daphnia magna that had been exposed to four organophosphates (OPs; parathion, chlorpyrifos, malathion, and acephate) and one carbamate (propoxur) for 48 h. These results were related to acute toxicity (median effective concentration [EC50] for immobility). For the four OPs, the EC50s were 7.03 pM, 3.17 pM, 10.56 pM, and 309.82 microM, respectively. The EC50 for propoxur was 449.90 pM. Reduction in AChE activity was directly related to an increase in immobility in all chemicals tested. However, the ratio between the EC50 and the AChE median inhibiting concentration ranged from 0.31 to 0.90. A 50% reduction in AChE activity generally was associated with detrimental effects on mobility. However, for acephate, high levels of AChE inhibition (70%) were observed in very low concentrations and were not associated with immobility. In addition, increasing the concentration of acephate further had a slight negative effect on AChE activity but a strong detrimental effect on mobility. Binding sites other than AChE possibly are involved in acephate toxicity to D. magna. Our findings demonstrate different associations between AChE inhibition and toxicity when different chemicals are compared. Therefore, the value of using AChE activity as a biomarker in D. magna will be dependent on the chemical tested.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Transthyretin (TTR) amyloidosis is a fatal disease for which new therapeutic approaches are urgently needed. We have designed two palindromic ligands, 2,2’-(4,4’-(heptane 1,7-diylbis(oxy))bis(3,5-dichloro-4,1-phenylene)) bis(azanediyl)dibenzoic acid (mds84) and 2,2’-(4,4’-(undecane-1,11-diylbis(oxy))bis(3,5-dichloro-4,1-phenylene)) bis(azanediyl)dibenzoic acid (4ajm15), that are rapidly bound by native wild-type TTR in whole serum and even more avidly by amyloidogenic TTR variants. One to one stoichiometry, demonstrable in solution and by MS, was confirmed by X-ray crystallographic analysis showing simultaneous occupation of both T4 binding sites in each tetrameric TTR molecule by the pair of ligand head groups. Ligand binding by native TTR was irreversible under physiological conditions, and it stabilized the tetrameric assembly and inhibited amyloidogenic aggregation more potently than other known ligands. These superstabilizers are orally bioavailable and exhibit low inhibitory activity against cyclooxygenase (COX). They offer a promising platform for development of drugs to treat and prevent TTR amyloidosis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We are studying two enzymes from the shikimate pathway, dehydroquinate synthase (DHQS) and 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS). Both enzymes have been the subject of numerous studies to elucidate their reaction mechanisms. Crystal structures of DHQS and EPSPS in the presence and absence of substrates, cofactors and/or inhibitors are now available. These structures reveal movements of domains, rearrangements of loops and changes in side-chain positions necessary for the formation of a catalytically competent active site. The potential for using complementary small-angle X-ray scattering (SAXS) studies to confirm the presence of these structural differences in solution has also been explored. Comparative analysis of crystal structures, in the presence and absence of ligands, has revealed structural features critical for substrate-binding and catalysis. We have also analysed these structures by generating GRID energy maps to detect favourable binding sites. The combination of X-ray crystallography, SAXS and computational techniques provides an enhanced analysis of structural features important for the function of these complex enzymes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The hexaazamacrocycles [28](DBF)2N6 {cyclo[bis(4,6-dimethyldibenzo[b,d]furaniminoethyleneiminoethylene]} and [32](DBF)2N6 {cyclo[bis(4,6-dimethyldibenzo[b,d]furaniminopropyleneiminopropylene]} form stable dinuclear copper(II) complexes suitable to behave as receptors for several anionic substrates. These two receptors were used to study the binding interactions with several substrates, such as imidazole (Him) and some carboxylates [benzoate (bz−), oxalate (ox2−), malonate (mal2−), phthalate (ph2−), isophthalate (iph2−), and terephthalate (tph2−)] by spectrophotometric titrations and EPR spectroscopy in MeOH (or H2O):DMSO (1:1 v/v) solution. The largest association constant was found for ox2− with Cu2[32](DBF)2N64+, whereas for the aromatic dicarboxylate anions the binding constants follow the trend ph2− > iph2− > tph2−, i.e. decrease with the increase of the distance of the two binding sites of the substrate. On the other hand, the large blue shift of 68 nm observed by addition of Him to Cu2[32](DBF)2N64+ points out for the formation of the bridged CuimCu cascade complex, indicating this receptor as a potential sensor for the detection and determination of imidazole in solution. The X-band EPR spectra of the Cu2[28](DBF)2N64+ and Cu2[32](DBF)2N6]4+ complexes and the cascade complexes with the substrates, performed in H2O:DMSO (1:1 v/v) at 5 to 15 K, showed that the CuCu distance is slightly larger than the one found in crystal state and that this distance increases when the substrate is accommodated between the two copper centres. The crystal structure of [Cu2[28](DBF)2N6(ph)2]·CH3OH was determined by X-ray diffraction and revealed the two copper centres bridged by two ph2− anions at a Cu···Cu distance of 5.419(1) Å. Each copper centre is surrounded by three carboxylate oxygen atoms from two phthalate anions and three contiguous nitrogen atoms of the macrocycle in a pseudo octahedral coordination environment.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Blumeria graminis is an economically important obligate plant-pathogenic fungus, whose entire genome was recently sequenced and manually annotated using ab initio in silico predictions [7]. Employing large scale proteogenomic analysis we are now able to verify independently the existence of proteins predicted by 24% of open reading frame models. We compared the haustoria and sporulating hyphae proteomes and identified 71 proteins exclusively in haustoria, the feeding and effector-delivery organs of the pathogen. These proteins are ‘significantly smaller than the rest of the protein pool and predicted to be secreted. Most do not share any similarities with Swiss–Prot or Trembl entries nor possess any identifiable Pfam domains. We used a novel automated prediction pipeline to model the 3D structures of the proteins, identify putative ligand binding sites and predict regions of intrinsic disorder. This revealed that the protein set found exclusively in haustoria is significantly less disordered than the rest of the identified Blumeria proteins or random (and representative) protein sets generated from the yeast proteome. For most of the haustorial proteins with unknown functions no good templates could be found, from which to generate high quality models. Thus, these unknown proteins present potentially new protein folds that can be specific to the interaction of the pathogen with its host.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Recombinant expression systems differ in the type of glycosylation they impart on expressed antigens such as the human immunodeficiency virus type 1 (HIV-1) envelope glycoproteins, potentially affecting their biological properties. We performed head-to-head antigenic, immunogenic and molecular profiling of two distantly related Env surface (gp120) antigens produced in different systems: (a) mammalian (293 FreeStyle cells; 293F) cells in the presence of kifunensine, which impart only high-mannose glycans; (b) insect cells (Spodoptera frugiperda, Sf9), which confer mainly paucimannosidic glycans; (c) Sf9 cells recombinant for mammalian glycosylation enzymes (Sf9 Mimic), which impart high-mannose, hybrid and complex glycans without sialic acid; and (d) 293F cells, which impart high-mannose, hybrid and complex glycans with sialic acid. Molecular models revealed a significant difference in gp120 glycan coverage between the Sf9-derived and wild-type mammalian-cell-derived material that is predicted to affect ligand binding sites proximal to glycans. Modeling of solvent-exposed surface electrostatic potentials showed that sialic acid imparts a significant negative surface charge that may influence gp120 antigenicity and immunogenicity. Gp120 expressed in systems that do not incorporate sialic acid displayed increased ligand binding to the CD4 binding and CD4-induced sites compared to those expressed in the system that do, and imparted other more subtle differences in antigenicity in a gp120 subtype-specific manner. Non-sialic-acid-containing gp120 was significantly more immunogenic than the sialylated version when administered in two different adjuvants, and induced higher titers of antibodies competing for CD4 binding site ligand-gp120 interaction. These findings suggest that non-sialic-acid-imparting systems yield gp120 immunogens with modified antigenic and immunogenic properties, considerations that should be considered when selecting expression systems for glycosylated antigens to be used for structure-function studies and for vaccine use.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We have previously identified allosteric modulators of the cannabinoid CB1 receptor (Org 27569, PSNCBAM-1) which display a contradictory pharmacological profile: increasing the specific binding of the CB1 receptor agonist [3H]CP55940 but producing a decrease in CB1 receptor agonist efficacy. Here we investigated the effect one or both compounds in a broad range of signalling endpoints linked to CB1 receptor activation. We assessed the effect of these compounds on CB1 receptor agonist-induced [35S]GTPγS binding, inhibition and stimulation of forskolin stimulated cAMP production, phosphorylation of ERK, and β arrestin recruitment. We also investigated the effect of these allosteric modulators on CB1 agonist binding kinetics. Both compounds display ligand dependence, being significantly more potent as modulators of CP55940 signalling as compared to WIN55212 and having little effect on [3H]WIN55212 binding. Org 27569 displays biased antagonism whereby it inhibits: agonist-induced [35S]GTPγS binding, simulation (Gαs mediated) and inhibition (Gαi mediated) of cAMP production and β arrestin recruitment. In contrast, it acts as an enhancer of agonist-induced ERK phosphoryation. Alone, the compound can act also as an allosteric agonist, increasing cAMP production and ERK phosphorylation. We find that in both saturation and kinetic binding experiments, the Org 27569 and PSNCBAM-1 appeared to influence only orthosteric ligand maximum occupancy rather than affinity. The data indicate that the allosteric modulators share a common mechanism whereby they increase available high affinity CB1 agonist binding sites. The receptor conformation stabilised by the allosterics appears to induce signalling and also selectively traffics orthosteric agonist signalling via the ERK phosphorylation pathway.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Activated G protein-coupled receptors (GPCRs) are phosphorylated and interact with beta-arrestins, which mediate desensitization and endocytosis. Endothelin-converting enzyme-1 (ECE-1) degrades neuropeptides in endosomes and can promote recycling. Although endocytosis, dephosphorylation, and recycling are accepted mechanisms of receptor resensitization, a large proportion of desensitized receptors can remain at the cell surface. We investigated whether reactivation of noninternalized, desensitized (phosphorylated) receptors mediates resensitization of the substance P (SP) neurokinin 1 receptor (NK(1)R). Herein, we report a novel mechanism of resensitization by which protein phosphatase 2A (PP2A) is recruited to dephosphorylate noninternalized NK(1)R. A desensitizing concentration of SP reduced cell-surface SP binding sites by only 25%, and SP-induced Ca(2+) signals were fully resensitized before cell-surface binding sites started to recover, suggesting resensitization of cell-surface-retained NK(1)R. SP induced association of beta-arrestin1 and PP2A with noninternalized NK(1)R. beta-Arrestin1 small interfering RNA knockdown prevented SP-induced association of cell-surface NK(1)R with PP2A, indicating that beta-arrestin1 mediates this interaction. ECE-1 inhibition, by trapping beta-arrestin1 in endosomes, also impeded SP-induced association of cell-surface NK(1)R with PP2A. Resensitization of NK(1)R signaling required both PP2A and ECE-1 activity. Thus, after stimulation with SP, PP2A interacts with noninternalized NK(1)R and mediates resensitization. PP2A interaction with NK(1)R requires beta-arrestin1. ECE-1 promotes this process by releasing beta-arrestin1 from NK(1)R in endosomes. These findings represent a novel mechanism of PP2A- and ECE-1-dependent resensitization of GPCRs.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Somatostatin-receptor 1 (sst1) is an autoreceptor in the central nervous system that regulates the release of somatostatin. Sst1 is present intracellularly and at the cell surface. To investigate sst1 trafficking, rat sst1 tagged with epitope was expressed in rat insulinoma cells 1046-38 (RIN-1046-38) and tracked by antibody labeling. Confocal microscopic analysis revealed colocalization of intracellularly localized rat sst1-human simplex virus (HSV) with Rab5a-green fluorescent protein and Rab11a-green fluorescent protein, indicating the distribution of the receptor in endocytotic and recycling organelles. Somatostatin-14 induced internalization of cell surface receptors and reduction of binding sites on the cell surface. It also stimulated recruitment of intracellular sst1-HSV to the plasma membrane. Confocal analysis of sst1-HSV revealed that the receptor was initially transported within superficial vesicles. Prolonged stimulation of the cells with the peptide agonist induced intracellular accumulation of somatostatin-14. Because the number of cell surface binding sites did not change during prolonged stimulation, somatostatin-14 was internalized through a dynamic process of continuous endocytosis, recycling, and recruitment of intracellularly present sst1-HSV. Accumulated somatostatin-14 bypassed degradation via the endosomal-lysosomal route and was instead rapidly released as intact and biologically active somatostatin-14. Our results show for the first time that sst1 mediates a dynamic process of endocytosis, recycling, and re-endocytosis of its cognate ligand.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Substance P (SP) induces endocytosis and recycling of the neurokinin 1 receptor (NK1R) in endothelial cells and spinal neurons at sites of inflammation and pain, and it is thus important to understand the mechanism and function of receptor trafficking. We investigated how the SP concentration affects NK1R trafficking and determined the role of Rab GTPases in trafficking. NK1R trafficking was markedly influenced by the SP concentration. High SP (10 nM) induced translocation of the NK1R and beta-arrestin 1 to perinuclear sorting endosomes containing Rab5a, where NK1R remained for >60 min. Low SP (1 nM) induced translocation of the NK1R to early endosomes located immediately beneath the plasma membrane that also contained Rab5a and beta-arrestin 1, followed by rapid recycling of the NK1R. Overexpression of Rab5a promoted NK1R translocation to perinuclear sorting endosomes, whereas the GTP binding-deficient mutant Rab5aS34N caused retention of the NK1R in superficial early endosomes. NK1R translocated from superficial early endosomes to recycling endosomes containing Rab4a and Rab11a, and Rab11aS25N inhibited NK1R recycling. Rapid NK1R recycling coincided with resensitization of SP-induced Ca2+ mobilization and with the return of surface SP binding sites. Resensitization was minimally affected by inhibition of vacuolar H(+)-ATPase and phosphatases but was markedly suppressed by disruption of Rab4a and Rab11a. Thus, whereas beta-arrestins mediate NK1R endocytosis, Rab5a regulates translocation between early and sorting endosomes, and Rab4a and Rab11a regulate trafficking through recycling endosomes. We have thus identified a new function of Rab5a as a control protein for directing concentration-dependent trafficking of the NK1R into different intracellular compartments and obtained evidence that Rab4a and Rab11a contribute to G-protein-coupled receptor recycling from early endosomes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Duchenne muscular dystrophy is a severe X-linked inherited muscle wasting disorder caused by mutations in the dystrophin gene. Adeno-associated virus (AAV) vectors have been extensively used to deliver genes efficiently for dystrophin expression in skeletal muscles. To overcome limited packaging capacity of AAV vectors (<5 kb), truncated recombinant microdystrophin genes with deletions of most of rod and carboxyl-terminal (CT) domains of dystrophin have been developed. We have previously shown the efficiency of mRNA sequence–optimized microdystrophin (ΔR4-23/ΔCT, called MD1) with deletion of spectrin-like repeat domain 4 to 23 and CT domain in ameliorating the pathology of dystrophic mdx mice. However, the CT domain of dystrophin is thought to recruit part of the dystrophin-associated protein complex, which acts as a mediator of signalling between extracellular matrix and cytoskeleton in muscle fibers. In this study, we extended the ΔR4-23/ΔCT microdystrophin by incorporating helix 1 of the coiled-coil motif in the CT domain of dystrophin (MD2), which contains the α1-syntrophin and α-dystrobrevin binding sites. Intramuscular injection of AAV2/9 expressing CT domain–extended microdystrophin showed efficient dystrophin expression in tibialis anterior muscles of mdx mice. The presence of the CT domain of dystrophin in MD2 increased the recruitment of α1-syntrophin and α-dystrobrevin at the sarcolemma and significantly improved the muscle resistance to lengthening contraction–induced muscle damage in the mdx mice compared with MD1. These results suggest that the incorporation of helix 1 of the coiled-coil motif in the CT domain of dystrophin to the microdystrophins will substantially improve their efficiency in restoring muscle function in patients with Duchenne muscular dystrophy.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cesium (Cs) is chemically similar to potassium (K). However, although K is an essential element, Cs is toxic to plants. Two contrasting hypotheses to explain Cs toxicity have been proposed: (1) extracellular Cs+ prevents K+ uptake and, thereby, induces K starvation; and (2) intracellular Cs+ interacts with vital K+-binding sites in proteins, either competitively or noncompetitively, impairing their activities. We tested these hypotheses with Arabidopsis (Arabidopsis thaliana). Increasing the Cs concentration in the agar (Cs(agar)) on which Arabidopsis were grown reduced shoot growth. Increasing the K concentration in the agar (K(agad)) increased the Cs(agar) at which Cs toxicity was observed. However, although increasing Cs(agar) reduced shoot K concentration (K(shoot)), the decrease in shoot growth appeared unrelated to K(shoot) per se. Furthermore, the changes in gene expression in Cs-intoxicated plants differed from those of K-starved plants, suggesting that Cs intoxication was not perceived genetically solely as K starvation. In addition to reducing K(shoot) increasing Cs(agar) also increased shoot Cs concentration (Cs(shoot)), but shoot growth appeared unrelated to Cs(shoot) per se. The relationship between shoot growth and Cs(shoot)/Kt(shoot) suggested that, at a nontoxic Cs(shoot) growth was determined by K(shoot) but that the growth of Cs-intoxicated plants was related to the Cs(shoot)/K(shoot) quotient. This is consistent with Cs intoxication resulting from competition between K+ and Cs+ for K+-binding sites on essential proteins.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We report an atomic resolution X-ray crystal structure containing both enantiomers of rac-[Ru(phen)2dppz]2+ with the d-(ATGCAT)2 DNA duplex (phen = phenanthroline; dppz = dipyridophenazine). The first example of any enantiomeric pair crystallized with a DNA duplex shows different orientations of the Λ and Δ binding sites, separated by a clearly defined structured water monolayer. Job plots show that the same species is present in solution. Each enantiomer is bound at a TG/CA step and shows intercalation from the minor groove. One water molecule is directly located on one phenazine N atom in the Δ-enantiomer only.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background Autism spectrum conditions (ASC) are a group of conditions characterized by difficulties in communication and social interaction, alongside unusually narrow interests and repetitive, stereotyped behaviour. Genetic association and expression studies have suggested an important role for the GABAergic circuits in ASC. Syntaxin 1A (STX1A) encodes a protein involved in regulation of serotonergic and GABAergic systems and its expression is altered in autism. Methods In this study, the association between three single nucleotide polymorphisms (SNPs) (rs4717806, rs941298 and rs6951030) in STX1A gene and Asperger syndrome (AS) were tested in 650 controls and 479 individuals with AS, all of Caucasian ancestry. Results rs4717806 (P=0.00334) and rs941298 (P=0.01741) showed a significant association with AS, replicating previous results. Both SNPs putatively alter transcription factor binding sites both directly and through other variants in high linkage disequilibrium. Conclusions The current study confirms the role of STX1A as an important candidate gene in ASC. The exact molecular mechanisms through which STX1A contributes to the etiology remain to be elucidated.