55 resultados para BCL-2 PHOSPHORYLATION
Resumo:
Homologous desensitization of beta(2)-adrenergic and other G-protein-coupled receptors is a two-step process. After phosphorylation of agonist-occupied receptors by G-protein-coupled receptor kinases, they bind beta-arrestins, which triggers desensitization and internalization of the receptors. Because it is not known which regions of the receptor are recognized by beta-arrestins, we have investigated beta-arrestin interaction and internalization of a set of mutants of the human beta(2)-adrenergic receptor. Mutation of the four serine/threonine residues between residues 355 and 364 led to the loss of agonist-induced receptor-beta-arrestin2 interaction as revealed by fluorescence resonance energy transfer (FRET), translocation of beta-arrestin2 to the plasma membrane, and receptor internalization. Mutation of all seven serine/threonine residues distal to residue 381 did not affect agonist-induced receptor internalization and beta-arrestin2 translocation. A beta(2)-adrenergic receptor truncated distal to residue 381 interacted normally with beta-arrestin2, whereas its ability to internalize in an agonist-dependent manner was compromised. A similar impairment of internalization was observed when only the last eight residues of the C terminus were deleted. Our experiments show that the C terminus distal to residue 381 does not affect the initial interaction between receptor and beta-arrestin, but its last eight amino acids facilitate receptor internalization in concert with beta-arrestin2.
Resumo:
Interaction of G-protein-coupled receptors with beta-arrestins is an important step in receptor desensitization and in triggering "alternative" signals. By means of confocal microscopy and fluorescence resonance energy transfer, we have investigated the internalization of the human P2Y receptors 1, 2, 4, 6, 11, and 12 and their interaction with beta-arrestin-1 and -2. Co-transfection of each individual P2Y receptor with beta-arrestin-1-GFP or beta-arrestin-2-YFP into HEK-293 cells and stimulation with the corresponding agonists resulted in a receptor-specific interaction pattern. The P2Y(1) receptor stimulated with ADP strongly translocated beta-arrestin-2-YFP, whereas only a slight translocation was observed for beta-arrestin-1-GFP. The P2Y(4) receptor exhibited equally strong translocation for beta-arrestin-1-GFP and beta-arrestin-2YFP when stimulated with UTP. The P2Y(6), P2Y(11), and P2Y(12) receptor internalized only when GRK2 was additionally cotransfected, but beta-arrestin translocation was only visible for the P2Y(6) and P2Y(11) receptor. The P2Y(2) receptor showed a beta-arrestin translocation pattern that was dependent on the agonist used for stimulation. UTP translocated beta-arrestin-1-GFP and beta-arrestin-2-YFP equally well, whereas ATP translocated beta-arrestin-1-GFP to a much lower extent than beta-arrestin2- YFP. The same agonist-dependent pattern was seen in fluorescence resonance energy transfer experiments between the fluorescently labeled P2Y(2) receptor and beta-arrestins. Thus, the P2Y(2) receptor would be classified as a class A receptor when stimulated with ATP or as a class B receptor when stimulated with UTP. The ligand-specific recruitment of beta-arrestins by ATP and UTP stimulation of P2Y(2) receptors was further found to result in differential stimulation of ERK phosphorylation. This suggests that the two different agonists induce distinct active states of this receptor that show differential interactions with beta-arrestins.
Resumo:
Phytochemical-rich foods have been shown to be effective at reversing age-related deficits in memory in both animals and humans. We show that a supplementation with a blueberry diet (2% w/w) for 12 weeks improves the performance of aged animals in spatial working memory tasks. This improvement emerged within 3 weeks and persisted for the remainder of the testing period. Memory performance correlated well with the activation of cAMP-response element-binding protein (CREB) and increases in both pro- and mature levels of brain-derived neurotrophic factor (BDNF) in the hippocampus. Changes in CREB and BDNF in aged and blueberry-supplemented animals were accompanied by increases in the phosphorylation state of extracellular signal-related kinase (ERK1/2), rather than that of calcium calmodulin kinase (CaMKII and CaMKIV) or protein kinase A. Furthermore, age and blueberry supplementation were linked to changes in the activation state of Akt, mTOR, and the levels of Arc/Arg3.1 in the hippocampus, suggesting that pathways involved in de novo protein synthesis may be involved. Although causal relationships cannot be made among supplementation, behavior, and biochemical parameters, the measurement of anthocyanins and flavanols in the brain following blueberry supplementation may indicate that changes in spatial working memory in aged animals are linked to the effects of flavonoids on the ERK-CREB-BDNF pathway. (c) 2008 Elsevier Inc. All Fights reserved.
Resumo:
Sapintoxin A (SAP A) and 12-deoxyphorbol 13-phenylacetate (DOPP), are two biologically active but non-turnour-promoting phorbol esters that potently bind to and activate the phorbol ester receptor, protein kinase C (PKC). SAP A and DOPP cause a dose-dependent increase in the phosphorylation of an 80 kd (80K) substrate protein for PKC in Swiss 3T3 cells. A similar dose—response effect was seen with sapintoxin D (SAP D), the stage 2 promoting analogue of 12-O-tetradecanoylphorbol-13-acetate and the complete promoter phorbol 12,13-dibutyrate (PDB). The doses resulting in a half maximal phosphorylation of this protein (Ka were 20 nM (SAP A), 45 nM (DOPP), 23 nM (SAP D) and 37 nM (PDB). Both non-promoting and phorbol esters induced a dose-dependent inhibition of [125I]epidermal growth factor (EGF) binding to its receptor in Swiss 3T3 cells. The doses required for 50% inhibition of binding (Ki) were: 8 nM (SAP A), 16 nM (DOPP), 14 nM (SAP D) and 17 nM (PDB). The results clearly demonstrate that induction of phosphorylation of the Pu 80K phosphoprotein and inhibition of [125I]EGF binding in Swiss 3T3 cells following exposure to phorbol esters is independent of the tumour-promoting activity of these compounds. The fact that SAP A, DOPP, SAP D and PDB are mitogenic for a variety of cell types and that exposure to these compounds leads to 80K phosphorylation and inhibition of [125I]EGF binding, suggests that these early biological events may play a role in the mitogenic response induced by these compounds.
Resumo:
ERK1 and ERK2 (ERK1/2) are central to the regulation of cell division, growth and survival. They are activated by phosphorylation of the Thr- and the Tyr- residues in their Thr-Glu-Tyr activation loops. The dogma is that dually-phosphorylated ERK1/2 constitute the principal activities in intact cells. We previously showed that, in neonatal rat cardiac myocytes, endothelin-1 and phorbol 12-myristate 13-acetate (PMA) powerfully and rapidly (maximal at ~ 5 min) activate ERK1/2. Here, we show that dually-phosphorylated ERK1/2 rapidly (< 2 min) appear in the nucleus following stimulation with endothelin-1. We characterized the active ERK1/2 species in myocytes exposed to endothelin-1 or PMA using MonoQ FPLC. Unexpectedly, two peaks of ERK1 and two peaks of ERK2 activity were resolved using in vitro kinase assays. One of each of these represented the dually-phosphorylated species. The other two represented activities for ERK1 or ERK2 which were phosphorylated solely on the Thr- residue. Monophosphothreonyl ERK1/2 represented maximally ~ 30% of total ERK1/2 activity after stimulation with endothelin-1 or PMA, and their kcat values were estimated to be minimally ~ 30% of the dually-phosphorylated species. Appearance of monophosphothreonyl ERK1/2 was rapid but delayed in comparison with dually-phosphorylated ERK1/2. Of 10 agonists studied, endothelin-1 and PMA were most effective in terms of ERK1/2 activation and in stimulating the appearance of monophosphothreonyl and dually-phosphorylated ERK1/2. Thus, enzymically active monophosphothreonyl ERK1/2 are formed endogenously following activation of the ERK1/2 cascade and we suggest that monophosphothreonyl ERK1/2 arise by protein tyrosine phosphatase-mediated dephosphorylation of dually-phosphorylated ERK1/2.
Resumo:
Much recent interest has focused on the potential of flavonoids to interact with intracellular signaling pathways such as with the mitogen-activated protein kinase cascade. We have investigated whether the observed strong neurotoxic potential of quercetin in primary cortical neurons may occur via specific and sensitive interactions within neuronal mitogen-activated protein kinase and Akt/protein kinase B (PKB) signaling cascades, both implicated in neuronal apoptosis. Quercetin induced potent inhibition of both Akt/PKB and ERK phosphorylation, resulting in reduced phosphorylation of BAD and a strong activation of caspase-3. High quercetin concentrations (30 microM) led to sustained loss of Akt phosphorylation and subsequent Akt cleavage by caspase-3, whereas at lower concentrations (<10 microM) the inhibition of Akt phosphorylation was transient and eventually returned to basal levels. Lower levels of quercetin also induced strong activation of the pro-survival transcription factor cAMP-responsive element-binding protein, although this did not prevent neuronal damage. O-Methylated quercetin metabolites inhibited Akt/PKB to lesser extent and did not induce such strong activation of caspase-3, which was reflected in the lower amount of damage they inflicted on neurons. In contrast, neither quercetin nor its O-methylated metabolites had any measurable effect on c-Jun N-terminal kinase phosphorylation. The glucuronide of quercetin was not toxic and did not evoke any alterations in neuronal signaling, probably reflecting its inability to enter neurons. Together these data suggest that quercetin and to a lesser extent its O-methylated metabolites may induce neuronal death via a mechanism involving an inhibition of neuronal survival signaling through the inhibition of both Akt/PKB and ERK rather than by an activation of the c-Jun N-terminal kinase-mediated death pathway.
Resumo:
We have recently shown that collagen activates platelets through a pathway dependent on the Fc receptor gamma-chain and the tyrosine kinase Syk. We report here that the Fc receptor gamma-chain and the candidate collagen receptor glycoprotein VI (GPVI) co-associate. Furthermore, cross-linking GPVI stimulates a similar pattern of tyrosine phosphorylation to that stimulated by collagen, including tyrosine phosphorylation of Fc receptor gamma-chain. These results support a model where GPVI couples collagen-stimulation of platelets to phosphorylation of the Fc receptor gamma-chain leading to activation of Syk and phospholipase Cgamma2.
Resumo:
Stimulation of platelets by the extracellular matrix protein collagen leads to activation of a tyrosine kinase-dependent mechanism resulting in secretion and aggregation. Tyrosine phosphorylation of the tyrosine kinase Syk and phospholipase Cgamma2 are early events in collagen-induced activation. We recently proposed that collagen-signaling in platelets involves a receptor or a receptor-associated protein containing an immunoreceptor tyrosine-based activation motif (ITAM) enabling interaction with Syk. In this report we show that collagen stimulation of platelets causes rapid tyrosine phosphorylation of the ITAM containing Fc receptor gamma-chain and that this is precipitated by the tandem Src homology 2 (SH2) domains of Syk expressed as a fusion protein. In addition we demonstrate an association between the Fc receptor gamma-chain with endogenous Syk in collagen-stimulated platelets. The Fc receptor gamma-chain undergoes tyrosine phosphorylation in platelets stimulated by a collagen-related peptide which does not bind the integrin alpha2beta1 and by the lectin wheat germ agglutinin. In contrast, cross-linking of the platelet low affinity receptor for immune complexes, FcgammaRIIA, or stimulation by thrombin does not induce phosphorylation of the Fc receptor gamma-chain. The present results provide a molecular basis for collagen activation of platelets which is independent of the integrin alpha2beta1 and involves phosphorylation of the Fc receptor gamma-chain, its association with Syk and subsequent phosphorylation of phospholipase Cgamma2. Collagen is the first example of a nonimmune receptor stimulus to signal through a pathway closely related to signaling by immune receptors.
Resumo:
Serine proteases generated during injury and inflammation cleave protease-activated receptor 2 (PAR(2)) on primary sensory neurons to induce neurogenic inflammation and hyperalgesia. Hyperalgesia requires sensitization of transient receptor potential vanilloid (TRPV) ion channels by mechanisms involving phospholipase C and protein kinase C (PKC). The protein kinase D (PKD) serine/threonine kinases are activated by diacylglycerol and PKCs and can phosphorylate TRPV1. Thus, PKDs may participate in novel signal transduction pathways triggered by serine proteases during inflammation and pain. However, it is not known whether PAR(2) activates PKD, and the expression of PKD isoforms by nociceptive neurons is poorly characterized. By using HEK293 cells transfected with PKDs, we found that PAR(2) stimulation promoted plasma membrane translocation and phosphorylation of PKD1, PKD2, and PKD3, indicating activation. This effect was partially dependent on PKCepsilon. By immunofluorescence and confocal microscopy, with antibodies against PKD1/PKD2 and PKD3 and neuronal markers, we found that PKDs were expressed in rat and mouse dorsal root ganglia (DRG) neurons, including nociceptive neurons that expressed TRPV1, PAR(2), and neuropeptides. PAR(2) agonist induced phosphorylation of PKD in cultured DRG neurons, indicating PKD activation. Intraplantar injection of PAR(2) agonist also caused phosphorylation of PKD in neurons of lumbar DRG, confirming activation in vivo. Thus, PKD1, PKD2, and PKD3 are expressed in primary sensory neurons that mediate neurogenic inflammation and pain transmission, and PAR(2) agonists activate PKDs in HEK293 cells and DRG neurons in culture and in intact animals. PKD may be a novel component of a signal transduction pathway for protease-induced activation of nociceptive neurons and an important new target for antiinflammatory and analgesic therapies.
Resumo:
Mechanisms that arrest G-protein-coupled receptor (GPCR) signaling prevent uncontrolled stimulation that could cause disease. Although uncoupling from heterotrimeric G-proteins, which transiently arrests signaling, is well described, little is known about the mechanisms that permanently arrest signaling. Here we reported on the mechanisms that terminate signaling by protease-activated receptor 2 (PAR(2)), which mediated the proinflammatory and nociceptive actions of proteases. Given its irreversible mechanism of proteolytic activation, PAR(2) is a model to study the permanent arrest of GPCR signaling. By immunoprecipitation and immunoblotting, we observed that activated PAR(2) was mono-ubiquitinated. Immunofluorescence indicated that activated PAR(2) translocated from the plasma membrane to early endosomes and lysosomes where it was degraded, as determined by immunoblotting. Mutant PAR(2) lacking intracellular lysine residues (PAR(2)Delta14K/R) was expressed at the plasma membrane and signaled normally but was not ubiquitinated. Activated PAR(2) Delta14K/R internalized but was retained in early endosomes and avoided lysosomal degradation. Activation of wild type PAR(2) stimulated tyrosine phosphorylation of the ubiquitin-protein isopeptide ligase c-Cbl and promoted its interaction with PAR(2) at the plasma membrane and in endosomes in an Src-dependent manner. Dominant negative c-Cbl lacking the ring finger domain inhibited PAR(2) ubiquitination and induced retention in early endosomes, thereby impeding lysosomal degradation. Although wild type PAR(2) was degraded, and recovery of agonist responses required synthesis of new receptors, lysine mutation and dominant negative c-Cbl impeded receptor ubiquitination and degradation and allowed PAR(2) to recycle and continue to signal. Thus, c-Cbl mediated ubiquitination and lysosomal degradation of PAR(2) to irrevocably terminate signaling by this and perhaps other GPCRs.
Resumo:
Inflammatory proteases (mast cell tryptase and trypsins) cleave protease-activated receptor 2 (PAR2) on spinal afferent neurons and cause persistent inflammation and hyperalgesia by unknown mechanisms. We determined whether transient receptor potential vanilloid receptor 1 (TRPV1), a cation channel activated by capsaicin, protons, and noxious heat, mediates PAR2-induced hyperalgesia. PAR2 was coexpressed with TRPV1 in small- to medium-diameter neurons of the dorsal root ganglia (DRG), as determined by immunofluorescence. PAR2 agonists increased intracellular [Ca2+] ([Ca2+]i) in these neurons in culture, and PAR2-responsive neurons also responded to the TRPV1 agonist capsaicin, confirming coexpression of PAR2 and TRPV1. PAR2 agonists potentiated capsaicin-induced increases in [Ca2+]i in TRPV1-transfected human embryonic kidney (HEK) cells and DRG neurons and potentiated capsaicin-induced currents in DRG neurons. Inhibitors of phospholipase C and protein kinase C (PKC) suppressed PAR2-induced sensitization of TRPV1-mediated changes in [Ca2+]i and TRPV1 currents. Activation of PAR2 or PKC induced phosphorylation of TRPV1 in HEK cells, suggesting a direct regulation of the channel. Intraplantar injection of a PAR2 agonist caused persistent thermal hyperalgesia that was prevented by antagonism or deletion of TRPV1. Coinjection of nonhyperalgesic doses of PAR2 agonist and capsaicin induced hyperalgesia that was inhibited by deletion of TRPV1 or antagonism of PKC. PAR2 activation also potentiated capsaicin-induced release of substance P and calcitonin gene-related peptide from superfused segments of the dorsal horn of the spinal cord, where they mediate hyperalgesia. We have identified a novel mechanism by which proteases that activate PAR2 sensitize TRPV1 through PKC. Antagonism of PAR2, TRPV1, or PKC may abrogate protease-induced thermal hyperalgesia.
Resumo:
G protein-coupled receptors of nociceptive neurons can sensitize transient receptor potential (TRP) ion channels, which amplify neurogenic inflammation and pain. Protease-activated receptor 2 (PAR(2)), a receptor for inflammatory proteases, is a major mediator of neurogenic inflammation and pain. We investigated the signaling mechanisms by which PAR(2) regulates TRPV4 and determined the importance of tyrosine phosphorylation in this process. Human TRPV4 was expressed in HEK293 cells under control of a tetracycline-inducible promoter, allowing controlled and graded channel expression. In cells lacking TRPV4, the PAR(2) agonist stimulated a transient increase in [Ca(2+)](i). TRPV4 expression led to a markedly sustained increase in [Ca(2+)](i). Removal of extracellular Ca(2+) and treatment with the TRPV4 antagonists Ruthenium Red or HC067047 prevented the sustained response. Inhibitors of phospholipase A(2) and cytochrome P450 epoxygenase attenuated the sustained response, suggesting that PAR(2) generates arachidonic acid-derived lipid mediators, such as 5',6'-EET, that activate TRPV4. Src inhibitor 1 suppressed PAR(2)-induced activation of TRPV4, indicating the importance of tyrosine phosphorylation. The TRPV4 tyrosine mutants Y110F, Y805F, and Y110F/Y805F were expressed normally at the cell surface. However, PAR(2) was unable to activate TRPV4 with the Y110F mutation. TRPV4 antagonism suppressed PAR(2) signaling to primary nociceptive neurons, and TRPV4 deletion attenuated PAR(2)-stimulated neurogenic inflammation. Thus, PAR(2) activation generates a signal that induces sustained activation of TRPV4, which requires a key tyrosine residue (TRPV4-Tyr-110). This mechanism partly mediates the proinflammatory actions of PAR(2).
Resumo:
Platelets are activated by a range of stimuli that share little or no resemblance in structure to each other or to recognized ligands, including diesel exhaust particles (DEP), small peptides [4N1-1, Champs (computed helical anti-membrane proteins), LSARLAF (Leu-Ser-Ala-Arg-Leu-Ala-Phe)], proteins (histones) and large polysaccharides (fucoidan, dextran sulfate). This miscellaneous group stimulate aggregation of human and mouse platelets through the glycoprotein VI (GPVI)-FcR γ-chain complex and/or C-type lectin-like receptor-2 (CLEC-2) as shown using platelets from mice deficient in either or both of these receptors. In addition, all of these ligands stimulate tyrosine phosphorylation in GPVI/CLEC-2-double-deficient platelets, indicating that they bind to additional surface receptors, although only in the case of dextran sulfate does this lead to activation. DEP, fucoidan and dextran sulfate, but not the other agonists, activate GPVI and CLEC-2 in transfected cell lines as shown using a sensitive reporter assay confirming a direct interaction with the two receptors. We conclude that this miscellaneous group of ligands bind to multiple proteins on the cell surface including GPVI and/or CLEC-2, inducing activation. These results have pathophysiological significance in a variety of conditions that involve exposure to activating charged/hydrophobic agents.
Resumo:
CLEC-2 is a member of new family of C-type lectin receptors characterized by a cytosolic YXXL downstream of three acidic amino acids in a sequence known as a hemITAM (hemi-immunoreceptor tyrosine-based activation motif). Dimerization of two phosphorylated CLEC-2 molecules leads to recruitment of the tyrosine kinase Syk via its tandem SH2 domains and initiation of a downstream signaling cascade. Using Syk-deficient and Zap-70-deficient cell lines we show that hemITAM signaling is restricted to Syk and that the upstream triacidic amino acid sequence is required for signaling. Using surface plasmon resonance and phosphorylation studies, we demonstrate that the triacidic amino acids are required for phosphorylation of the YXXL. These results further emphasize the distinct nature of the proximal events in signaling by hemITAM relative to ITAM receptors.
Resumo:
Platelet aggregation and phosphorylation of phospholipase Cγ2 induced by collagen were attenuated in ADAP(-/-) platelets. However, aggregation and signaling induced by collagen-related peptide (CRP), a GPVI-selective agonist, were largely unaffected. Platelet adhesion to CRP was also unaffected by ADAP deficiency. Adhesion to the α(2) β(1) -selective ligand GFOGER and to a peptide (III-04), which supports adhesion that is dependent on both GPVI and α(2) β(1), was reduced in ADAP(-/-) platelets. An impedance-based label-free detection technique, which measures adhesion and spreading of platelets, indicated that, in the absence of ADAP, spreading on GFOGER was also reduced. This was confirmed with non-fluorescent differential-interference contrast microscopy, which revealed reduced filpodia formation in ADAP(-/-) platelets adherent to GFOGER. This indicates that ADAP plays a role in mediating platelet activation via the collagen-binding integrin α(2) β(1). In addition, we found that ADAP(-/-) mice, which are mildly thrombocytopenic, have enlarged spleens as compared with wild-type animals. This may reflect increased removal of platelets from the circulation.