33 resultados para BAYESIAN-ESTIMATION
Resumo:
The use of Bayesian inference in the inference of time-frequency representations has, thus far, been limited to offline analysis of signals, using a smoothing spline based model of the time-frequency plane. In this paper we introduce a new framework that allows the routine use of Bayesian inference for online estimation of the time-varying spectral density of a locally stationary Gaussian process. The core of our approach is the use of a likelihood inspired by a local Whittle approximation. This choice, along with the use of a recursive algorithm for non-parametric estimation of the local spectral density, permits the use of a particle filter for estimating the time-varying spectral density online. We provide demonstrations of the algorithm through tracking chirps and the analysis of musical data.
Resumo:
In order to overcome divergence of estimation with the same data, the proposed digital costing process adopts an integrated design of information system to design the process knowledge and costing system together. By employing and extending a widely used international standard, industry foundation classes, the system can provide an integrated process which can harvest information and knowledge of current quantity surveying practice of costing method and data. Knowledge of quantification is encoded from literatures, motivation case and standards. It can reduce the time consumption of current manual practice. The further development will represent the pricing process in a Bayesian Network based knowledge representation approach. The hybrid types of knowledge representation can produce a reliable estimation for construction project. In a practical term, the knowledge management of quantity surveying can improve the system of construction estimation. The theoretical significance of this study lies in the fact that its content and conclusion make it possible to develop an automatic estimation system based on hybrid knowledge representation approach.
Resumo:
We consider the forecasting of macroeconomic variables that are subject to revisions, using Bayesian vintage-based vector autoregressions. The prior incorporates the belief that, after the first few data releases, subsequent ones are likely to consist of revisions that are largely unpredictable. The Bayesian approach allows the joint modelling of the data revisions of more than one variable, while keeping the concomitant increase in parameter estimation uncertainty manageable. Our model provides markedly more accurate forecasts of post-revision values of inflation than do other models in the literature.