32 resultados para Automated Cryptanalysis
Resumo:
Background Pseudomonas syringae can cause stem necrosis and canker in a wide range of woody species including cherry, plum, peach, horse chestnut and ash. The detection and quantification of lesion progression over time in woody tissues is a key trait for breeders to select upon for resistance. Results In this study a general, rapid and reliable approach to lesion quantification using image recognition and an artificial neural network model was developed. This was applied to screen both the virulence of a range of P. syringae pathovars and the resistance of a set of cherry and plum accessions to bacterial canker. The method developed was more objective than scoring by eye and allowed the detection of putatively resistant plant material for further study. Conclusions Automated image analysis will facilitate rapid screening of material for resistance to bacterial and other phytopathogens, allowing more efficient selection and quantification of resistance responses.
Resumo:
Temperature, pressure, gas stoichiometry, and residence time were varied to control the yield and product distribution of the palladium-catalyzed aminocarbonylation of aromatic bromides in both a silicon microreactor and a packed-bed tubular reactor. Automation of the system set points and product sampling enabled facile and repeatable reaction analysis with minimal operator supervision. It was observed that the reaction was divided into two temperature regimes. An automated system was used to screen steady-state conditions for offline analysis by gas chromatography to fit a reaction rate model. Additionally, a transient temperature ramp method utilizing online infrared analysis was used, leading to more rapid determination of the reaction activation energy of the lower temperature regimes. The entire reaction spanning both regimes was modeled in good agreement with the experimental data.