64 resultados para Area and perimeter
Resumo:
Aluminium is not a physiological component of the breast but has been measured recently in human breast tissues and breast cyst fluids at levels above those found in blood serum or milk. Since the presence of aluminium can lead to iron dyshomeostasis, levels of aluminium and iron-binding proteins (ferritin, transferrin) were measured in nipple aspirate fluid (NAF), a fluid present in the breast duct tree and mirroring the breast microenvironment. NAFs were collected noninvasively from healthy women (NoCancer; n = 16) and breast cancer-affected women (Cancer; n = 19), and compared with levels in serum (n = 15) and milk (n = 45) from healthy subjects. The mean level of aluminium, measured by ICP-mass spectrometry, was significantly higher in Cancer NAF (268.4 ± 28.1 μg l−1; n = 19) than in NoCancer NAF (131.3 ± 9.6 μg l−1; n = 16; P < 0.0001). The mean level of ferritin, measured through immunoassay, was also found to be higher in Cancer NAF (280.0 ± 32.3 μg l−1) than in NoCancer NAF (55.5 ± 7.2 μg l−1), and furthermore, a positive correlation was found between levels of aluminium and ferritin in the Cancer NAF (correlation coefficient R = 0.94, P < 0.001). These results may suggest a role for raised levels of aluminium and modulation of proteins that regulate iron homeostasis as biomarkers for identification of women at higher risk of developing breast cancer. The reasons for the high levels of aluminium in NAF remain unknown but possibilities include either exposure to aluminium-based antiperspirant salts in the adjacent underarm area and/or preferential accumulation of aluminium by breast tissues.
Resumo:
Income segregation across Melbourne’s residential communities is widening, and at a pace faster than in some other Australian cities. The widening gap between Melbourne’s rich and poor communities raises fears about concentrations of poverty and social exclusion, particularly if the geography of these communities is such that they and their residents are increasingly isolated from urban services and employment centres. Social exclusion in our metropolitan areas and the government responses to it are commonly thought to be the proper domain of social and economic policy. The role of urban planning is typically neglected, yet it helps shape the economic opportunities available to communities in its attempts to influence the geographical location of urban services, infrastructure and jobs. Under the current metropolitan strategy ‘Melbourne 2030’ urban services and transport infrastructure are to be concentrated within Principal Activity Centres spread throughout the metropolitan area and it is the intention that lower-income households should have ready access to these activity centres. However, the Victorian state government has few housing policy instruments to achieve this goal and there are fears that community mix may suffer as house prices and rents are bid up in the vicinity of Principal Activity Centres, and lower-income households are displaced. But are these fears justified by the changing geography of house prices in the metropolitan region? This is the key research question addressed in this paper which examines whether the Victorian practice of placing reliance on the market to deliver affordable housing, while intervening to promote a more compact pattern of urban settlement, is effective.
Resumo:
The structure and evolution of the Arctic stratospheric polar vortex is assessed during opposing phases of, primarily, the El Niño–Southern Oscillation (ENSO) and the Quasi-Biennial Oscillation (QBO), but the 11 year solar cycle and winters following large volcanic eruptions are also examined. The analysis is performed by taking 2-D moments of vortex potential vorticity (PV) fields which allow the area and centroid of the vortex to be calculated throughout the ERA-40 reanalysis data set (1958–2002). Composites of these diagnostics for the different phases of the natural forcings are then considered. Statistically significant results are found regarding the structure and evolution of the vortex during, in particular, the ENSO and QBO phases. When compared with the more traditional zonal mean zonal wind diagnostic at 60°N, the moment-based diagnostics are far more robust and contain more information regarding the state of the vortex. The study details, for the first time, a comprehensive sequence of events which map the evolution of the vortex during each of the forcings throughout an extended winter period.
Resumo:
Research on arable sandy loam and silty clay loam soils on 4° slopes in England has shown that tramlines (i.e. the unseeded wheeling areas used to facilitate spraying operations in cereal crops) can represent the most important pathway for phosphorus and sediment loss from moderately sloping fields. Detailed monitoring over the October–March period in winters 2005–2006 and 2006–2007 included event-based sampling of surface runoff, suspended and particulate sediment, and dissolved and particulate phosphorus from hillslope segments (each ∼300–800 m2) established in a randomized block design with four replicates of each treatment at each of two sites on lighter and heavier soils. Experimental treatments assessed losses from the cropped area without tramlines, and from the uncropped tramline area, and were compared to losses from tramlines which had been disrupted once in the autumn with a shallow tine. On the lighter soil, the effects of removal or shallow incorporation of straw residues was also determined. Research on both sandy and silty clay loam soils across two winters showed that tramline wheelings represented the dominant pathway for surface runoff and transport of sediment, phosphorus and nitrogen from cereal crops on moderate slopes. Results indicated 5·5–15·8% of rainfall lost as runoff, and losses of 0·8–2·9 kg TP ha−1 and 0·3–4·8 t ha−1 sediment in tramline treatments, compared to only 0·2–1·7% rainfall lost as runoff, and losses of 0·0–0·2 kg TP ha−1 and 0·003–0·3 t ha−1 sediment from treatments without tramlines or those where tramlines had been disrupted. The novel shallow disruption of tramline wheelings using a tine once following the autumn spray operation consistently and dramatically reduced (p < 0·001) surface runoff and loads of sediment, total nitrogen and total phosphorus to levels similar to those measured in cropped areas between tramlines. Results suggest that options for managing tramline wheelings warrant further refinement and evaluation with a view to incorporating them into spatially-targeted farm-level management planning using national or catchment-based agri-environment policy instruments aimed at reducing diffuse pollution from land to surface water systems. Copyright © 2010 John Wiley & Sons, Ltd.
Resumo:
This article examines the superficial and deep ethical and moral dilemmas confronting ‘insider’ researchers which we term external and internal ethical engagement. External ethical engagement refers to the traditional, easily identifiable ethical issues that insider researchers attend to by submitting their application for ethical approval to their institution’s internal review board. Internal ethical engagement relates to the deeper level ethical and moral dilemmas that insider researchers have to deal with once ‘in the field’ linked to on-going personal and professional relationships with participants, insider knowledge, conflicting professional and researcher roles, and anonymity. By reviewing the literature in this area and drawing on the authors’ experiences of undertaking interpretive studies at institutions where they were members of staff, we explore these concepts and examine the implications for insider researchers. Keywords: insider research; ethics; professional relationships; anonymity; access
Resumo:
Increasingly, corporate occupiers seek more flexible ways of meeting their accommodation needs. One consequence of this process has been the growth of the executive suite, serviced office or business centre market. This paper, the final report of a research project funded by the Real Estate Research Institute, focuses upon the geographical distribution of business centers offering executive suites within the US. After a brief review of the development of the market, the paper examines the availability of data, provides basic descriptive statistics of the distribution of executive suites by state and by metropolitan statistical area and then attempts to model the distribution using demographic and socio-economic data at MSA level. The distribution reflects employment in key growth sectors and the position of the MSA in the urban hierarchy. An appendix presents a preliminary view of the global distribution of suites.
Resumo:
We analyse in a common framework the properties of the Voronoi tessellations resulting from regular 2D and 3D crystals and those of tessellations generated by Poisson distributions of points, thus joining on symmetry breaking processes and the approach to uniform random distributions of seeds. We perturb crystalline structures in 2D and 3D with a spatial Gaussian noise whose adimensional strength is α and analyse the statistical properties of the cells of the resulting Voronoi tessellations using an ensemble approach. In 2D we consider triangular, square and hexagonal regular lattices, resulting into hexagonal, square and triangular tessellations, respectively. In 3D we consider the simple cubic (SC), body-centred cubic (BCC), and face-centred cubic (FCC) crystals, whose corresponding Voronoi cells are the cube, the truncated octahedron, and the rhombic dodecahedron, respectively. In 2D, for all values α>0, hexagons constitute the most common class of cells. Noise destroys the triangular and square tessellations, which are structurally unstable, as their topological properties are discontinuous in α=0. On the contrary, the honeycomb hexagonal tessellation is topologically stable and, experimentally, all Voronoi cells are hexagonal for small but finite noise with α<0.12. Basically, the same happens in the 3D case, where only the tessellation of the BCC crystal is topologically stable even against noise of small but finite intensity. In both 2D and 3D cases, already for a moderate amount of Gaussian noise (α>0.5), memory of the specific initial unperturbed state is lost, because the statistical properties of the three perturbed regular tessellations are indistinguishable. When α>2, results converge to those of Poisson-Voronoi tessellations. In 2D, while the isoperimetric ratio increases with noise for the perturbed hexagonal tessellation, for the perturbed triangular and square tessellations it is optimised for specific value of noise intensity. The same applies in 3D, where noise degrades the isoperimetric ratio for perturbed FCC and BCC lattices, whereas the opposite holds for perturbed SCC lattices. This allows for formulating a weaker form of the Kelvin conjecture. By analysing jointly the statistical properties of the area and of the volume of the cells, we discover that also the cells shape heavily fluctuates when noise is introduced in the system. In 2D, the geometrical properties of n-sided cells change with α until the Poisson-Voronoi limit is reached for α>2; in this limit the Desch law for perimeters is shown to be not valid and a square root dependence on n is established, which agrees with exact asymptotic results. Anomalous scaling relations are observed between the perimeter and the area in the 2D and between the areas and the volumes of the cells in 3D: except for the hexagonal (2D) and FCC structure (3D), this applies also for infinitesimal noise. In the Poisson-Voronoi limit, the anomalous exponent is about 0.17 in both the 2D and 3D case. A positive anomaly in the scaling indicates that large cells preferentially feature large isoperimetric quotients. As the number of faces is strongly correlated with the sphericity (cells with more faces are bulkier), in 3D it is shown that the anomalous scaling is heavily reduced when we perform power law fits separately on cells with a specific number of faces.
Resumo:
The photosynthetic characteristics of eight contrasting cocoa genotypes were studied with the aim of examining genotypic variation in maximum (light-saturated) photosynthetic rates, light-response curve parameters and water use efficiency. Photosynthetic traits were derived from single leaf gas exchange measurements using a portable infra-red gas analyser. All measurements were conducted in a common greenhouse environment. Significant variation was observed in light-saturated photosynthesis ranging from 3.4 to 5.7 µmol CO2 m-2 s-1 for the clones IMC 47 and SCA 6, respectively. Furthermore, analyses of photosynthetic light response curves indicated genotypic differences in light saturation point and quantum efficiency (i.e. the efficiency of light use). Stomatal conductance was a significant factor underlying genotypic differences in assimilation. Genotypic variation was also observed in a number of leaf traits, including specific leaf area (the ratio of leaf area to leaf weight), chlorophyll concentration and nitrogen content. There was a positive correlation between leaf nitrogen per unit area and light-saturated photosynthesis. Water use efficiency, defined as the ratio of photosynthetic rate to transpiration rate, also varied significantly between clones (ranging from 3.1 mmol mol-1 H2O for the clone IMC 47 to 4.2 mmol mol-1 H2O for the clone ICS 1). Water use efficiency was a negative function of specific leaf area, suggesting that low specific leaf area might be a useful criterion for selection for increased water use efficiency. It is concluded that both variation in water use efficiency and the photosynthetic response to light have the potential to be exploited in breeding programmes.
Resumo:
Nitrogen and phosphorus losses from the catchment of Slapton Ley, a small coastal lake in SW England, were calculated using an adaptation of a model developed by Jorgensen (1980). A detailed survey of the catchment revealed that its land use is dominated by both permanent and temporary grassland (respectively 38 and 32% of its total area), and that the remainder is made up of the cultivation of cereals and field vegetables, and market gardening. Livestock numbers in the catchment constitute ca. 6600 head of cattle, 10,000 sheep, 590 pigs, 1700 poultry and 58 horses. The permanent human population of the area is ca. 2000, served by two small gravity-fed sewage treatment works (STWs). Inputs to, and losses from, farmland in the catchment were computed using Jorgensen’s model, and coefficients derived from the data of Cooke (1976), Gostick (1982), Rast and Lee (1983) and Vollenweider (1968). Allowing for outputs from STWs, the total annual external load of N and P upon Slapton Ley is 160 t (35 kg ha-1) a-1 N, and 4.8 t (1.05 kg ha-1) a-1 P. Accordingly to Vollenweider (1968, 1975), such loadings exceed OECD permissible level by a factor of ca. 50 in the case of N, and ca. 5 in that of P. In order to reduce nutrient loads, attention would need to be paid to both STW and agricultural sources.
Resumo:
During winter the ocean surface in polar regions freezes over to form sea ice. In the summer the upper layers of sea ice and snow melts producing meltwater that accumulates in Arctic melt ponds on the surface of sea ice. An accurate estimate of the fraction of the sea ice surface covered in melt ponds is essential for a realistic estimate of the albedo for global climate models. We present a melt-pond–sea-ice model that simulates the three-dimensional evolution of melt ponds on an Arctic sea ice surface. The advancements of this model compared to previous models are the inclusion of snow topography; meltwater transport rates are calculated from hydraulic gradients and ice permeability; and the incorporation of a detailed one-dimensional, thermodynamic radiative balance. Results of model runs simulating first-year and multiyear sea ice are presented. Model results show good agreement with observations, with duration of pond coverage, pond area, and ice ablation comparing well for both the first-year ice and multiyear ice cases. We investigate the sensitivity of the melt pond cover to changes in ice topography, snow topography, and vertical ice permeability. Snow was found to have an important impact mainly at the start of the melt season, whereas initial ice topography strongly controlled pond size and pond fraction throughout the melt season. A reduction in ice permeability allowed surface flooding of relatively flat, first-year ice but had little impact on the pond coverage of rougher, multiyear ice. We discuss our results, including model shortcomings and areas of experimental uncertainty.
Resumo:
Increased risks of extinction to populations of animals and plants under changing climate have now been demonstrated for many taxa. This study assesses the extinction risks to species within an important genus of pollinating bees (Colletes: Apidae) by estimating the expected changes in the area and isolation of suitable habitat under predicted climatic condition for 2050. Suitable habitat was defined on the basis of the presence of known forage plants as well as climatic suitability. To investigate whether ecological specialisation was linked to extinction risk we compared three species which were generalist pollen foragers on several plant families with three species which specialised on pollen from a single plant species. Both specialist and generalist species showed an increased risk of extinction with shifting climate, and this was particularly high for the most specialised species (Colletes anchusae and C. wolfi). The forage generalist C. impunctatus, which is associated with Boreo-Alpine environments, is potentially threatened through significant reduction in available climatic niche space. Including the distribution of the principal or sole pollen forage plant, when modelling the distribution of monolectic or narrowly oligolectic species, did not improve the predictive accuracy of our models as the plant species were considerably more widespread than the specialised bees associated with them.
Resumo:
Purpose – The purpose of this paper is to demonstrate key strategic decisions involved in turning around a large multinational operating in a dynamic market. Design/methodology/approach – The paper is based on analysis of archival documents and a semi-structured interview with the chairman of the company credited with its rescue. Findings – Turnaround is complex and involves both planned and emergent strategies. The progress is non-linear requiring adjustment and change in direction of travel. Top management credibility and vision is critical to success. Rescue is only possible if the company has a strong cash generative business among its businesses. The speed of decision making, decisiveness and the ability to implement strategy are among the key ingredients of success. Originality/value – Turnaround is an under-researched area in strategy. This paper contributes to a better understanding in this important area and bridges the gap between theory and practice. It provides a practical view and demonstrates how a leading executive with significant expertise and successful turnaround track record deals with inherent dilemmas of turnaround
Resumo:
Four CO2 concentration inversions and the Global Fire Emissions Database (GFED) versions 2.1 and 3 are used to provide benchmarks for climate-driven modeling of the global land-atmosphere CO2 flux and the contribution of wildfire to this flux. The Land surface Processes and exchanges (LPX) model is introduced. LPX is based on the Lund-Potsdam-Jena Spread and Intensity of FIRE (LPJ-SPITFIRE) model with amended fire probability calculations. LPX omits human ignition sources yet simulates many aspects of global fire adequately. It captures the major features of observed geographic pattern in burnt area and its seasonal timing and the unimodal relationship of burnt area to precipitation. It simulates features of geographic variation in the sign of the interannual correlations of burnt area with antecedent dryness and precipitation. It simulates well the interannual variability of the global total land-atmosphere CO2 flux. There are differences among the global burnt area time series from GFED2.1, GFED3 and LPX, but some features are common to all. GFED3 fire CO2 fluxes account for only about 1/3 of the variation in total CO2 flux during 1997–2005. This relationship appears to be dominated by the strong climatic dependence of deforestation fires. The relationship of LPX-modeled fire CO2 fluxes to total CO2 fluxes is weak. Observed and modeled total CO2 fluxes track the El Niño–Southern Oscillation (ENSO) closely; GFED3 burnt area and global fire CO2 flux track the ENSO much less so. The GFED3 fire CO2 flux-ENSO connection is most prominent for the El Niño of 1997–1998, which produced exceptional burning conditions in several regions, especially equatorial Asia. The sign of the observed relationship between ENSO and fire varies regionally, and LPX captures the broad features of this variation. These complexities underscore the need for process-based modeling to assess the consequences of global change for fire and its implications for the carbon cycle.
Resumo:
Global wetlands are believed to be climate sensitive, and are the largest natural emitters of methane (CH4). Increased wetland CH4 emissions could act as a positive feedback to future warming. The Wetland and Wetland CH4 Inter-comparison of Models Project (WETCHIMP) investigated our present ability to simulate large-scale wetland characteristics and corresponding CH4 emissions. To ensure inter-comparability, we used a common experimental protocol driving all models with the same climate and carbon dioxide (CO2) forcing datasets. The WETCHIMP experiments were conducted for model equilibrium states as well as transient simulations covering the last century. Sensitivity experiments investigated model response to changes in selected forcing inputs (precipitation, temperature, and atmospheric CO2 concentration). Ten models participated, covering the spectrum from simple to relatively complex, including models tailored either for regional or global simulations. The models also varied in methods to calculate wetland size and location, with some models simulating wetland area prognostically, while other models relied on remotely sensed inundation datasets, or an approach intermediate between the two. Four major conclusions emerged from the project. First, the suite of models demonstrate extensive disagreement in their simulations of wetland areal extent and CH4 emissions, in both space and time. Simple metrics of wetland area, such as the latitudinal gradient, show large variability, principally between models that use inundation dataset information and those that independently determine wetland area. Agreement between the models improves for zonally summed CH4 emissions, but large variation between the models remains. For annual global CH4 emissions, the models vary by ±40% of the all-model mean (190 Tg CH4 yr−1). Second, all models show a strong positive response to increased atmospheric CO2 concentrations (857 ppm) in both CH4 emissions and wetland area. In response to increasing global temperatures (+3.4 °C globally spatially uniform), on average, the models decreased wetland area and CH4 fluxes, primarily in the tropics, but the magnitude and sign of the response varied greatly. Models were least sensitive to increased global precipitation (+3.9 % globally spatially uniform) with a consistent small positive response in CH4 fluxes and wetland area. Results from the 20th century transient simulation show that interactions between climate forcings could have strong non-linear effects. Third, we presently do not have sufficient wetland methane observation datasets adequate to evaluate model fluxes at a spatial scale comparable to model grid cells (commonly 0.5°). This limitation severely restricts our ability to model global wetland CH4 emissions with confidence. Our simulated wetland extents are also difficult to evaluate due to extensive disagreements between wetland mapping and remotely sensed inundation datasets. Fourth, the large range in predicted CH4 emission rates leads to the conclusion that there is both substantial parameter and structural uncertainty in large-scale CH4 emission models, even after uncertainties in wetland areas are accounted for.
Resumo:
The authors examined avoidance personal goals as concurrent (Study 1) and longitudinal (Study 2) predictors of multiple aspects of well-being in the United States and Japan. In both studies, participants adopted more avoidance personal goals in Japan relative to the United States. Both studies also demonstrated that avoidance personal goals were significant negative predictors of the most relevant aspects of well-being in each culture. Specifically, avoidance personal goals were negative predictors of intrapersonal and eudaimonic well-being in the United States and were negative predictors of interpersonal and eudaimonic well-being in Japan. The findings clarify and extend puzzling findings from prior empirical work in this area, and raise provocative possibilities about the nature of avoidance goal pursuit.