46 resultados para Apteryx mantelli, call structure, North Island Brown Kiwi, ratites, vocal communication
Resumo:
It is widely accepted, based on data from the last few decades and on model simulations, that anthropogenic climate change will cause increased fire activity. However, less attention has been paid to the relationship between abrupt climate changes and heightened fire activity in the paleorecord. We use 35 charcoal and pollen records to assess how fire regimes in North America changed during the last glacial–interglacial transition (15 to 10 ka), a time of large and rapid climate changes. We also test the hypothesis that a comet impact initiated continental-scale wildfires at 12.9 ka; the data do not support this idea, nor are continent-wide fires indicated at any time during deglaciation. There are, however, clear links between large climate changes and fire activity. Biomass burning gradually increased from the glacial period to the beginning of the Younger Dryas. Although there are changes in biomass burning during the Younger Dryas, there is no systematic trend. There is a further increase in biomass burning after the Younger Dryas. Intervals of rapid climate change at 13.9, 13.2, and 11.7 ka are marked by large increases in fire activity. The timing of changes in fire is not coincident with changes in human population density or the timing of the extinction of the megafauna. Although these factors could have contributed to fire-regime changes at individual sites or at specific times, the charcoal data indicate an important role for climate, and particularly rapid climate change, in determining broad-scale levels of fire activity.
Resumo:
Potential vorticity (PV) succinctly describes the evolution of large-scale atmospheric flow because of its material conservation and invertibility properties. However, diabatic processes in extratropical cyclones can modify PV and influence both mesoscale weather and the evolution of the synoptic-scale wave pattern. In this investigation, modification of PV by diabatic processes is diagnosed in a Met Office Unified Model (MetUM) simulation of a North Atlantic cyclone using a set of PV tracers. The structure of diabatic PV within the extratropical cyclone is investigated and linked to the processes responsible for it. On the mesoscale, a tripole of diabatic PV is generated across the tropopause fold extending down to the cold front. The structure results from a dipole in heating across the frontal interface due to condensation in the warm conveyor belt flanking the upper side of the fold and evaporation of precipitation in the dry intrusion and below. On isentropic surfaces intersecting the tropopause, positive diabatic PV is generated on the stratospheric side, while negative diabatic PV is generated on the tropospheric side. The stratospheric diabatic PV is generated primarily by long-wave cooling which peaks at the tropopause itself due to the sharp gradient in humidity there. The tropospheric diabatic PV originates locally from the long-wave radiation and non-locally by advection out of the top of heating associated with the large-scale cloud, convection and boundary layer schemes. In most locations there is no diabatic modification of PV at the tropopause itself but diabatic PV anomalies would influence the tropopause indirectly through the winds they induce and subsequent advection. The consequences of this diabatic PV dipole for the evolution of synoptic-scale wave patterns are discussed.
Resumo:
Multilocus digenic linkage disequilibria (LD) and their population structure were investigated in eleven landrace populations of barley (Hordeum vulgare ssp. vulgare L.) in Sardinia, using 134 dominant simple-sequence amplified polymorphism markers. The analysis of molecular variance for these markers indicated that the populations were partially differentiated (F ST = 0.18), and clustered into three geographic areas. Consistent with this population pattern, STRUCTURE analysis allocated individuals from a bulk of all populations into four genetic groups, and these groups also showed geographic patterns. In agreement with other molecular studies in barley, the general level of LD was low (13 % of locus pairs, with P < 0.01) in the bulk of 337 lines, and decayed steeply with map distance between markers. The partitioning of multilocus associations into various components indicated that genetic drift and founder effects played a major role in determining the overall genetic makeup of the diversity in these landrace populations, but that epistatic homogenising or diversifying selection was also present. Notably, the variance of the disequilibrium component was relatively high, which implies caution in the pooling of barley lines for association studies. Finally, we compared the analyses of multilocus structure in barley landrace populations with parallel analyses in both composite crosses of barley on the one hand and in natural populations of wild barley on the other. Neither of these serves as suitable mimics of landraces in barley, which require their own study. Overall, the results suggest that these populations can be exploited for LD mapping if population structure is controlled.
Resumo:
Tests of the new Rossby wave theories that have been developed over the past decade to account for discrepancies between theoretical wave speeds and those observed by satellite altimeters have focused primarily on the surface signature of such waves. It appears, however, that the surface signature of the waves acts only as a rather weak constraint, and that information on the vertical structure of the waves is required to better discriminate between competing theories. Due to the lack of 3-D observations, this paper uses high-resolution model data to construct realistic vertical structures of Rossby waves and compares these to structures predicted by theory. The meridional velocity of a section at 24° S in the Atlantic Ocean is pre-processed using the Radon transform to select the dominant westward signal. Normalized profiles are then constructed using three complementary methods based respectively on: (1) averaging vertical profiles of velocity, (2) diagnosing the amplitude of the Radon transform of the westward propagating signal at different depths, and (3) EOF analysis. These profiles are compared to profiles calculated using four different Rossby wave theories: standard linear theory (SLT), SLT plus mean flow, SLT plus topographic effects, and theory including mean flow and topographic effects. Our results support the classical theoretical assumption that westward propagating signals have a well-defined vertical modal structure associated with a phase speed independent of depth, in contrast with the conclusions of a recent study using the same model but for different locations in the North Atlantic. The model structures are in general surface intensified, with a sign reversal at depth in some regions, notably occurring at shallower depths in the East Atlantic. SLT provides a good fit to the model structures in the top 300 m, but grossly overestimates the sign reversal at depth. The addition of mean flow slightly improves the latter issue, but is too surface intensified. SLT plus topography rectifies the overestimation of the sign reversal, but overestimates the amplitude of the structure for much of the layer above the sign reversal. Combining the effects of mean flow and topography provided the best fit for the mean model profiles, although small errors at the surface and mid-depths are carried over from the individual effects of mean flow and topography respectively. Across the section the best fitting theory varies between SLT plus topography and topography with mean flow, with, in general, SLT plus topography performing better in the east where the sign reversal is less pronounced. None of the theories could accurately reproduce the deeper sign reversals in the west. All theories performed badly at the boundaries. The generalization of this method to other latitudes, oceans, models and baroclinic modes would provide greater insight into the variability in the ocean, while better observational data would allow verification of the model findings.
Resumo:
In late February 2010 the extraordinary windstorm Xynthia crossed over Southwestern and Central Europe and caused severe damage, affecting particularly the Spanish and French Atlantic coasts. The storm was embedded in uncommon large-scale atmospheric and boundary conditions prior to and during its development, namely enhanced sea surface temperatures (SST) within the low-level entrainment zone of air masses, an unusual southerly position of the polar jet stream, and a remarkable split jet structure in the upper troposphere. To analyse the processes that led to the rapid intensification of this exceptional storm originating close to the subtropics (30°N), the sensitivity of the cyclone intensification to latent heat release is determined using the regional climate model COSMO-CLM forced with ERA-Interim data. A control simulation with observed SST shows that moist and warm air masses originating from the subtropical North Atlantic were involved in the cyclogenesis process and led to the formation of a vertical tower with high values of potential vorticity (PV). Sensitivity studies with reduced SST or increased laminar boundary roughness for heat led to reduced surface latent heat fluxes. This induced both a weaker and partly retarded development of the cyclone and a weakening of the PV-tower together with reduced diabatic heating rates, particularly at lower and mid levels. We infer that diabatic processes played a crucial role during the phase of rapid deepening of Xynthia and thus to its intensity over the Southeastern North Atlantic. We suggest that windstorms like Xynthia may occur more frequently under future climate conditions due to the warming SSTs and potentially enhanced latent heat release, thus increasing the windstorm risk for Southwestern Europe.
Resumo:
The warm conveyor belt (WCB) of an extratropical cyclone generally splits into two branches. One branch (WCB1) turns anticyclonically into the downstream upper-level tropospheric ridge, while the second branch (WCB2) wraps cyclonically around the cyclone centre. Here, the WCB split in a typical North Atlantic cold-season cyclone is analysed using two numerical models: the Met Office Unified Model and the COSMO model. The WCB flow is defined using off-line trajectory analysis. The two models represent the WCB split consistently. The split occurs early in the evolution of the WCB with WCB1 experiencing maximum ascent at lower latitudes and with higher moisture content than WCB2. WCB1 ascends abruptly along the cold front where the resolved ascent rates are greatest and there is also line convection. In contrast, WCB2 remains at lower levels for longer before undergoing saturated large-scale ascent over the system's warm front. The greater moisture in WCB1 inflow results in greater net potential temperature change from latent heat release, which determines the final isentropic level of each branch. WCB1 also exhibits lower outflow potential vorticity values than WCB2. Complementary diagnostics in the two models are utilised to study the influence of individual diabatic processes on the WCB. Total diabatic heating rates along the WCB branches are comparable in the two models with microphysical processes in the large-scale cloud schemes being the major contributor to this heating. However, the different convective parameterisation schemes used by the models cause significantly different contributions to the total heating. These results have implications for studies on the influence of the WCB outflow in Rossby wave evolution and breaking. Key aspects are the net potential temperature change and the isentropic level of the outflow which together will influence the relative mass going into each WCB branch and the associated negative PV anomalies at the tropopause-level flow.
Resumo:
Predicting the future response of the Antarctic Ice Sheet to climate change requires an understanding of the ice streams that dominate its dynamics. Here we use cosmogenic isotope exposure-age dating (26Al, 10Be and 36Cl) of erratic boulders on ice-free land on James Ross Island, north-eastern Antarctic Peninsula, to define the evolution of Last Glacial Maximum (LGM) ice in the adjacent Prince Gustav Channel. These data include ice-sheet extent, thickness and dynamical behaviour. Prior to ∼18 ka, the LGM Antarctic Peninsula Ice Sheet extended to the continental shelf-edge and transported erratic boulders onto high-elevation mesas on James Ross Island. After ∼18 ka there was a period of rapid ice-sheet surface-lowering, coincident with the initiation of the Prince Gustav Ice Stream. This timing coincided with rapid increases in atmospheric temperature and eustatic sea-level rise around the Antarctic Peninsula. Collectively, these data provide evidence for a transition from a thick, cold-based LGM Antarctic Peninsula Ice Sheet to a thinner, partially warm-based ice sheet during deglaciation.
Resumo:
Virtually no information is available on the response of land-terminating Antarctic Peninsula glaciers to climate change on a centennial timescale. This paper analyses the topography, geomorphology and sedimentology of prominent moraines on James Ross Island, Antarctica, to determine geometric changes and to interpret glacier behaviour. The moraines are very likely due to a late-Holocene phase of advance and featured (1) shearing and thrusting within the snout, (2) shearing and deformation of basal sediment, (3) more supraglacial debris than at present and (4) short distances of sediment transport. Retreat of ∼100 m and thinning of 15–20 m has produced a loss of 0.1 km3 of ice. The pattern of surface lowering is asymmetric. These geometrical changes are suggested most simply to be due to a net negative mass balance caused by a drier climate. Comparisons of the moraines with the current glaciological surface structure of the glaciers permits speculation of a transition from a polythermal to a cold-based thermal regime. Small land-terminating glaciers in the northern Antarctic Peninsula region could be cooling despite a warming climate.
Resumo:
Between the eleventh and thirteenth centuries AD, the Lower Vistula valley represented a permeable and shifting frontier between Pomerelia (eastern Pomerania), which had been incorporated into the Polish Christian state by the end of the tenth century, and the territories of western Prussian tribes, who had resisted attempts at Christianization. Pomeranian colonization eventually began to falter in the latter decades of the twelfth and early thirteenth centuries, most likely as a result of Prussian incursions, which saw the abandonment of sites across the borderland. Subsequently, the Teutonic Order and its allies led a protracted holy war against the Prussian tribes, which resulted in the conquest of the region and its incorporation into a theocratic state by the end of the thirteenth century. This was accompanied by a second wave of colonization, which resulted in the settlement pattern that is still visible in the landscape of north-central Poland today. However, not all colonies were destroyed or abandoned in between the two phases of colonization. The recently excavated site of Biała Góra, situated on the western side of the Forest of Sztum overlooking the River Nogat, represents a unique example of a transitional settlement that included both Pomeranian and Teutonic Order phases. The aim of this paper is to situate the site within its broader landscape context which can be characterized as a militarized frontier, where, from the later twelfth century and throughout much of the thirteenth century, political and economic expansion was combined with the ideology of Christian holy war and missionary activity. This paper considers how the colonists provisioned and sustained themselves in comparison to other sites within the region, and how Biała Góra may be tentatively linked to a documented but otherwise lost outpost in this volatile borderland.
Resumo:
Stratospheric water vapour is a powerful greenhouse gas. The longest available record from balloon observations over Boulder, Colorado, USA shows increases in stratospheric water vapour concentrations that cannot be fully explained by observed changes in the main drivers, tropical tropopause temperatures and methane. Satellite observations could help resolve the issue, but constructing a reliable long-term data record from individual short satellite records is challenging. Here we present an approach to merge satellite data sets with the help of a chemistry–climate model nudged to observed meteorology. We use the models’ water vapour as a transfer function between data sets that overcomes issues arising from instrument drift and short overlap periods. In the lower stratosphere, our water vapour record extends back to 1988 and water vapour concentrations largely follow tropical tropopause temperatures. Lower and mid-stratospheric long-term trends are negative, and the trends from Boulder are shown not to be globally representative. In the upper stratosphere, our record extends back to 1986 and shows positive long-term trends. The altitudinal differences in the trends are explained by methane oxidation together with a strengthened lower-stratospheric and a weakened upper stratospheric circulation inferred by this analysis. Our results call into question previous estimates of surface radiative forcing based on presumed global long-term increases in water vapour concentrations in the lower stratosphere.
Resumo:
Previous studies documented that a distinct southward shift of central-Pacific low-level wind anomalies occurring during the ENSO decaying phase, is caused by an interaction between the Western Pacific annual cycle and El Niño-Southern Oscillation (ENSO) variability. The present study finds that the meridional movement of the central-Pacific wind anomalies appears only during traditional Eastern-Pacific (or EP) El Niño events rather than in Central-Pacific (CP) El Niño events in which sea surface temperature (SST) anomalies are confined to the central Pacific. The zonal structure of ENSO-related SST anomalies therefore has an important effect on meridional asymmetry in the associated atmospheric response and its modulation by the annual cycle. In contrast to EP El Niño events, the SST anomalies of CP El Niño events extend further west towards to the warm pool region with its climatological warm SSTs. In the warm pool region, relatively small SST anomalies thus are able to excite convection anomalies on both sides of the equator, even with a meridionally asymmetric SST background state. Therefore, almost meridionally symmetric precipitation and wind anomalies are observed over the central Pacific during the decaying phase of CP El Niño events. The SST anomaly pattern of La Niña events is similar to CP El Niño events with a reversed sign. Accordingly, no distinct southward displacement of the atmospheric response occurs over the central Pacific during the La Niña decaying phase. These results have important implications for ENSO climate impacts over East Asia, since the anomalous low-level anticyclone over the western North Pacific is an integral part of the annual cycle-modulated ENSO response.
Resumo:
How tropical cyclone (TC) activity in the northwestern Pacific might change in a future climate is assessed using multidecadal Atmospheric Model Intercomparison Project (AMIP)-style and time-slice simulations with the ECMWF Integrated Forecast System (IFS) at 16-km and 125-km global resolution. Both models reproduce many aspects of the present-day TC climatology and variability well, although the 16-km IFS is far more skillful in simulating the full intensity distribution and genesis locations, including their changes in response to El Niño–Southern Oscillation. Both IFS models project a small change in TC frequency at the end of the twenty-first century related to distinct shifts in genesis locations. In the 16-km IFS, this shift is southward and is likely driven by the southeastward penetration of the monsoon trough/subtropical high circulation system and the southward shift in activity of the synoptic-scale tropical disturbances in response to the strengthening of deep convective activity over the central equatorial Pacific in a future climate. The 16-km IFS also projects about a 50% increase in the power dissipation index, mainly due to significant increases in the frequency of the more intense storms, which is comparable to the natural variability in the model. Based on composite analysis of large samples of supertyphoons, both the development rate and the peak intensities of these storms increase in a future climate, which is consistent with their tendency to develop more to the south, within an environment that is thermodynamically more favorable for faster development and higher intensities. Coherent changes in the vertical structure of supertyphoon composites show system-scale amplification of the primary and secondary circulations with signs of contraction, a deeper warm core, and an upward shift in the outflow layer and the frequency of the most intense updrafts. Considering the large differences in the projections of TC intensity change between the 16-km and 125-km IFS, this study further emphasizes the need for high-resolution modeling in assessing potential changes in TC activity.
Resumo:
Earth hummocks (also termed pounus or thúfur) are a common form of periglacial non-sorted patterned ground. The study objectives were to determine the morphology, distribution and development on slopes of earth hummocks in north-east Okstindan, Norway, an area with many hummocks but few documented accounts. The methodology involved detailed geomorphological mapping and precise measurement with a profileometer. The internal structure of the hummocks was investigated through excavations and sediment sample analyses. Fourteen sites with well-developed earth hummocks (accounting for over 650 individual hummock forms) were investigated. The sites have an average altitude of 750 m and occur on slopes with an average gradient of 7°. The hummock heights are in the range 0.11–0.52 m and their diameters 0.7–1.5 m, although coalescent forms are up to 5 m in length. The hummock morphology is characterised by a variable plan form, asymmetry with respect to upslope and downslope forms, downslope elongation, coalescence, and superimposed microtopography. The hummocks’ distribution appeared to have been controlled by the existence of a frost-susceptible ‘host’ sediment, but moisture availability and topographic position played a role. The authors conclude that differential frost heave and vegetation cover stability are critical for the hummocks’ longevity in the studied landscape.
Resumo:
Let H ∈ C 2(ℝ N×n ), H ≥ 0. The PDE system arises as the Euler-Lagrange PDE of vectorial variational problems for the functional E ∞(u, Ω) = ‖H(Du)‖ L ∞(Ω) defined on maps u: Ω ⊆ ℝ n → ℝ N . (1) first appeared in the author's recent work. The scalar case though has a long history initiated by Aronsson. Herein we study the solutions of (1) with emphasis on the case of n = 2 ≤ N with H the Euclidean norm on ℝ N×n , which we call the “∞-Laplacian”. By establishing a rigidity theorem for rank-one maps of independent interest, we analyse a phenomenon of separation of the solutions to phases with qualitatively different behaviour. As a corollary, we extend to N ≥ 2 the Aronsson-Evans-Yu theorem regarding non existence of zeros of |Du| and prove a maximum principle. We further characterise all H for which (1) is elliptic and also study the initial value problem for the ODE system arising for n = 1 but with H(·, u, u′) depending on all the arguments.
Resumo:
We present a palaeoecological investigation of pre-Columbian land use in the savannah “forest island” landscape of north-east Bolivian Amazonia. A 5700 year sediment core from La Luna Lake, located adjacent to the La Luna forest island site, was analysed for fossil pollen and charcoal. We aimed to determine the palaeoenvironmental context of pre-Columbian occupation on the site and assess the environmental impact of land use in the forest island region. Evidence for anthropogenic burning and Zea mays L. cultivation began ~2000 cal a BP, at a time when the island was covered by savannah, under drier-than-present climatic conditions. After ~1240 cal a BP burning declined and afforestation occurred. We show that construction of the ring ditch, which encircles the island, did not involve substantial deforestation. Previous estimates of pre-Columbian population size in this region, based upon labour required for forest clearance, should therefore be reconsidered. Despite the high density of economically useful plants, such as Theobroma cacao, in the modern forest, no direct pollen evidence for agroforestry was found. However, human occupation is shown to pre-date and span forest expansion on this site, suggesting that here, and in the wider forest island region, there is no truly pre-anthropogenic ‘pristine’ forest.