77 resultados para Antarctic Thresholds - Ecosystem Resilience and Adaptation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The catchment of the River Thames, the principal river system in southern England, provides the main water supply for London but is highly vulnerable to changes in climate, land use and population. The river is eutrophic with significant algal blooms with phosphorus assumed to be the primary chemical indicator of ecosystem health. In the Thames Basin, phosphorus is available from point sources such as wastewater treatment plants and from diffuse sources such as agriculture. In order to predict vulnerability to future change, the integrated catchments model for phosphorus (INCA-P) has been applied to the river basin and used to assess the cost-effectiveness of a range of mitigation and adaptation strategies. It is shown that scenarios of future climate and land-use change will exacerbate the water quality problems, but a range of mitigation measures can improve the situation. A cost-effectiveness study has been undertaken to compare the economic benefits of each mitigation measure and to assess the phosphorus reductions achieved. The most effective strategy is to reduce fertilizer use by 20% together with the treatment of effluent to a high standard. Such measures will reduce the instream phosphorus concentrations to close to the EU Water Framework Directive target for the Thames.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

On-going human population growth and changing patterns of resource consumption are increasing global demand for ecosystem services, many of which are provided by soils. Some of these ecosystem services are linearly related to the surface area of pervious soil, whereas others show non-linear relationships, making ecosystem service optimization a complex task. As limited land availability creates conflicting demands among various types of land use, a central challenge is how to weigh these conflicting interests and how to achieve the best solutions possible from a perspective of sustainable societal development. These conflicting interests become most apparent in soils that are the most heavily used by humans for specific purposes: urban soils used for green spaces, housing, and other infrastructure and agricultural soils for producing food, fibres and biofuels. We argue that, despite their seemingly divergent uses of land, agricultural and urban soils share common features with regards to interactions between ecosystem services, and that the trade-offs associated with decision-making, while scale- and context-dependent, can be surprisingly similar between the two systems. We propose that the trade-offs within land use types and their soil-related ecosystems services are often disproportional, and quantifying these will enable ecologists and soil scientists to help policy makers optimizing management decisions when confronted with demands for multiple services under limited land availability.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many species have the ability to resprout vegetatively after a substantial loss of biomass induced by environmental stress, including drought. Many of the regions characterised by ecosystems where resprouting is common are projected to experience more frequent and intense drought during the 21st Century. However, in assessments of ecosystem response to drought disturbance there has been scant consideration of the resilience and post-drought recovery of resprouting species. Systematic differences in hydraulic and allocation traits suggest that resprouting species are more resilient to drought-stress than nonresprouting species. Evidence suggests that ecosystems dominated by resprouters recover from disturbance more quickly than ecosystems dominated by nonresprouters. The ability of resprouters to avoid mortality and withstand drought, coupled with their ability to recover rapidly, suggests that the impact of increased drought stress in ecosystems dominated by these species may be small. The strategy of resprouting needs to be modelled explicitly to improve estimates of future climate-change impacts on the carbon cycle, but this will require several important knowledge gaps to be filled before resprouting can be properly implemented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cerrãdo savannas have the greatest fire activity of all major global land-cover types and play a significant role in the global carbon cycle. During the 21st century, temperatures are projected to increase by ∼ 3 ◦C coupled with a precipitation decrease of ∼ 20 %. Although these conditions could potentially intensify drought stress, it is unknown how that might alter vegetation composition and fire regimes. To assess how Neotropical savannas responded to past climate changes, a 14 500-year, high-resolution, sedimentary record from Huanchaca Mesetta, a palm swamp located in the cerrãdo savanna in northeastern Bolivia, was analyzed with phytoliths, stable isotopes, and charcoal. A nonanalogue, cold-adapted vegetation community dominated the Lateglacial–early Holocene period (14 500–9000 cal yr BP, which included trees and C3 Pooideae and C4 Panicoideae grasses. The Lateglacial vegetation was fire-sensitive and fire activity during this period was low, likely responding to fuel availability and limitation. Although similar vegetation characterized the early Holocene, the warming conditions associated with the onset of the Holocene led to an initial increase in fire activity. Huanchaca Mesetta became increasingly firedependent during the middle Holocene with the expansion of C4 fire-adapted grasses. However, as warm, dry conditions, characterized by increased length and severity of the dry season, continued, fuel availability decreased. The establishment of the modern palm swamp vegetation occurred at 5000 cal yr BP. Edaphic factors are the first-order control on vegetation on the rocky quartzite mesetta. Where soils are sufficiently thick, climate is the second-order control of vegetation on the mesetta. The presence of the modern palm swamp is attributed to two factors: (1) increased precipitation that increased water table levels and (2) decreased frequency and duration of surazos (cold wind incursions from Patagonia) leading to increased temperature minima. Natural (soil, climate, fire) drivers rather than anthropogenic drivers control the vegetation and fire activity at Huanchaca Mesetta. Thus the cerrãdo savanna ecosystem of the Huanchaca Plateau has exhibited ecosystem resilience to major climatic changes in both temperature and precipitation since the Lateglacial period.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Soils play a pivotal role in major global biogeochemical cycles (carbon, nutrient and water), while hosting the largest diversity of organisms on land. Because of this, soils deliver fundamental ecosystem services, and management to change a soil process in support of one ecosystem service can either provide co-benefits to other services or can result in trade-offs. In this critical review, we report the state-of-the-art understanding concerning the biogeochemical cycles and biodiversity in soil, and relate these to the provisioning, regulating, supporting and cultural ecosystem services which they underpin. We then outline key knowledge gaps and research challenges, before providing recommendations for management activities to support the continued delivery of ecosystem services from soils. We conclude that although there are knowledge gaps that require further research, enough is known to start improving soils globally. The main challenge is in finding ways to share knowledge with soil managers and policy-makers, so that best-practice management can be implemented. A key element of this knowledge sharing must be in raising awareness of the multiple ecosystem services underpinned by soils, and the natural capital they provide. The International Year of Soils in 2015 presents the perfect opportunity to begin a step-change in how we harness scientific knowledge to bring about more sustainable use of soils for a secure global society.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Our review looks at pollinator conservation and highlights the differences in approach between managing for pollination services and preserving pollinator diversity. We argue that ecosystem service management does not equal biodiversity conservation, and that maintaining species diversity is crucial in providing ecosystem resilience in the face of future environmental change. Management and policy measures therefore need to focus on species not just in human dominated landscapes but need to benefit wider diversity of species including those in specialised habitats. We argue that only by adopting a holistic ecosystem approach we can ensure the conservation and sustainable use of biodiversity and ecosystem services in the long-term.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Soils play a pivotal role in major global biogeochemical cycles (carbon, nutrient, and water), while hosting the largest diversity of organisms on land. Because of this, soils deliver fundamental ecosystem services, and management to change a soil process in support of one ecosystem service can either provide co-benefits to other services or result in trade-offs. In this critical review, we report the state-of-the-art understanding concerning the biogeochemical cycles and biodiversity in soil, and relate these to the provisioning, regulating, supporting, and cultural ecosystem services which they underpin. We then outline key knowledge gaps and research challenges, before providing recommendations for management activities to support the continued delivery of ecosystem services from soils. We conclude that, although soils are complex, there are still knowledge gaps, and fundamental research is still needed to better understand the relationships between different facets of soils and the array of ecosystem services they underpin, enough is known to implement best practices now. There is a tendency among soil scientists to dwell on the complexity and knowledge gaps rather than to focus on what we do know and how this knowledge can be put to use to improve the delivery of ecosystem services. A significant challenge is to find effective ways to share knowledge with soil managers and policy makers so that best management can be implemented. A key element of this knowledge exchange must be to raise awareness of the ecosystems services underpinned by soils and thus the natural capital they provide. We know enough to start moving in the right direction while we conduct research to fill in our knowledge gaps. The lasting legacy of the International Year of Soils in 2015 should be for soil scientists to work together with policy makers and land managers to put soils at the centre of environmental policy making and land management decisions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Drastic biodiversity declines have raised concerns about the deterioration of ecosystem functions and have motivated much recent research on the relationship between species diversity and ecosystem functioning. A functional trait framework has been proposed to improve the mechanistic understanding of this relationship, but this has rarely been tested for organisms other than plants. We analysed eight datasets, including five animal groups, to examine how well a trait-based approach, compared with a more traditional taxonomic approach, predicts seven ecosystem functions below- and above-ground. Trait-based indices consistently provided greater explanatory power than species richness or abundance. The frequency distributions of single or multiple traits in the community were the best predictors of ecosystem functioning. This implies that the ecosystem functions we investigated were underpinned by the combination of trait identities (i.e. single-trait indices) and trait complementarity (i.e. multi-trait indices) in the communities. Our study provides new insights into the general mechanisms that link biodiversity to ecosystem functioning in natural animal communities and suggests that the observed responses were due to the identity and dominance patterns of the trait composition rather than the number or abundance of species per se.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Research into transmissible spongiform encephalopathy (TSE) diseases has become a high priority worldwide in recent years yet remarkably little is known about the behaviour of TSE infectivity in the environment. The resilience and stability of prion proteins could lead to soils becoming a potential reservoir of TSE infectivity as a result of contamination from activities such as infected carcass burial or the dispersion of effluents from slaughter houses, or by contamination of pastures by infected animals, (e.g. scrapie in sheep). Knowledge of the fate of prion proteins in soils, and associated physico-chemical conditions which favour migration, can be used to help prevent re-infection of animals through grazing, to protect watercourses and develop good management practices. In two consecutive experiments of 9 and 6 months, the migration of recombinant ovine PrP (recPrP) in soil columns was followed under contrasting levels of microbial activity (normal versus reduced), under varying regimes of soil water content and redox potential, and in two different soil types (loamy sand and clay loam). At each analysis time (1, 3, 6 or 9 months), in both soil types, full-length recPrP was detected in the original contaminated layer, indicating the resilience and stability of recPrP under varied soil conditions, even in the presence of active soil microbial populations. Evidence of protein migration was found in every soil column at the earliest analysis time (1 or 3 months), but was restricted to a maximum distance of 1 cm, indicative of limited initial mobility in soils followed by strong adsorption over the following days to weeks. The survival of recPrP in the soil over a period of at least 9 months was demonstrated. In this study, recPrP was used as an indicator for potential TSE infectivity, although infectivity tests should be carried out before conclusions can be drawn regarding the infection risk posed by prions in soil. However, it has been demonstrated that soil is likely to act as a significant barrier to the dispersion of contaminated material at storage or burial sites. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Holocene vegetation history of the Arabian Peninsula is poorly understood, with few palaeobotanical studies to date. At Awafi, Ras al-Khaimah, UAE, a 3.3 m lake sediment sequence records the vegetation development for the period 8500 cal. yr BP to similar to3000 cal. yr BP. delta(13)C isotope, pollen and phytolith analyses indicate that C3 Pooid grassland with a strong woody element existed during the early Holocene (between 8500 and 6000 cal. yr BP) and became replaced by mixed C3 and C4 grasses with a strong C4 Panicoid tall grass element between 5900 and 5400 cal. yr BP. An intense, arid event Occurred at 4100 cal. yr BP when the lake desiccated and was infilled by Aeolian sand. From 4100 cal. yr BP the vegetation was dominated by C4 Chloridoid types and Cyperaceae, suggesting an incomplete vegetation cover and Aeolian dune reactivation owing to increased regional aridity. These data outline the ecosystem dynamics and carbon cycling in response to palaeomon-soon and north-westerly variability during the Holocene. Copyright (C) 2004 John Wiley Sons, Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

1. Habitat fragmentation can affect pollinator and plant population structure in terms of species composition, abundance, area covered and density of flowering plants. This, in turn, may affect pollinator visitation frequency, pollen deposition, seed set and plant fitness. 2. A reduction in the quantity of flower visits can be coupled with a reduction in the quality of pollination service and hence the plants’ overall reproductive success and long-term survival. Understanding the relationship between plant population size and⁄ or isolation and pollination limitation is of fundamental importance for plant conservation. 3. Weexamined flower visitation and seed set of 10 different plant species fromfive European countries to investigate the general effects of plant populations size and density, both within (patch level) and between populations (population level), on seed set and pollination limitation. 4. Wefound evidence that the effects of area and density of flowering plant assemblages were generally more pronounced at the patch level than at the population level. We also found that patch and population level together influenced flower visitation and seed set, and the latter increased with increasing patch area and density, but this effect was only apparent in small populations. 5. Synthesis. By using an extensive pan-European data set on flower visitation and seed set we have identified a general pattern in the interplay between the attractiveness of flowering plant patches for pollinators and density dependence of flower visitation, and also a strong plant species-specific response to habitat fragmentation effects. This can guide efforts to conserve plant–pollinator interactions, ecosystem functioning and plant fitness in fragmented habitats.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Genetic differentiation among plant populations and adaptation to local environmental conditions are well documented. However, few studies have examined the potential contribution of plant antagonists, such as insect herbivores and pathogens, to the pattern of local adaptation. Here, a reciprocal transplant experiment was set up at three sites across Europe using two common plant species, Holcus lanatus and Plantago lanceolata. The amount of damage by the main above-ground plant antagonists was measured: a rust fungus infecting Holcus and a specialist beetle feeding on Plantago, both in low-density monoculture plots and in competition with interspecific neighbours. Strong genetic differentiation among provenances in the amount of damage by antagonists in both species was found. Local provenances of Holcus had significantly higher amounts of rust infection than foreign provenances, whereas local provenances of Plantago were significantly less damaged by the specialist beetle than the foreign provenances. The presence of surrounding vegetation affected the amount of damage but had little influence on the ranking of plant provenances. The opposite pattern of population differentiation in resistance to local antagonists in the two species suggests that it will be difficult to predict the consequences of plant translocations for interactions with organisms of higher trophic levels.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Natural resource-dependent societies in developing countries are facing increased pressures linked to global climate change. While social-ecological systems evolve to accommodate variability, there is growing evidence that changes in drought, storm and flood extremes are increasing exposure of currently vulnerable populations. In many countries in Africa, these pressures are compounded by disruption to institutions and variability in livelihoods and income. The interactions of both rapid and slow onset livelihood disturbance contribute to enduring poverty and slow processes of rural livelihood renewal across a complex landscape. We explore cross-scale dynamics in coping and adaptation response, drawing on qualitative data from a case study in Mozambique. The research characterises the engagements across multiple institutional scales and the types of agents involved, providing insight into emergent conditions for adaptation to climate change in rural economies, The analysis explores local responses to climate shocks, food security and poverty reduction, through informal institutions, forms of livelihood diversification and collective land-use systems that allow reciprocity, flexibility and the ability to buffer shocks. However, the analysis shows that agricultural initiatives have helped to facilitate effective livelihood renewal, through the reorganisation of social institutions and opportunities for communication, innovation and micro-credit. Although there are challenges to mainstreaming adaptation at different scales, this research shows why it is critical to assess how policies can protect conditions for emergence of livelihood transformation. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pollinators provide essential ecosystem services, and declines in some pollinator communities around the world have been reported. Understanding the fundamental components defining these communities is essential if conservation and restoration are to be successful. We examined the structure of plant-pollinator communities in a dynamic Mediterranean landscape, comprising a mosaic of post-fire regenerating habitats, and which is a recognized global hotspot for bee diversity. Each community was characterized by a highly skewed species abundance distribution, with a few dominant and many rare bee species, and was consistent with a log series model indicating that a few environmental factors govern the community. Floral community composition, the quantity and quality of forage resources present, and the geographic locality organized bee communities at various levels: (1) The overall structure of the bee community (116 species), as revealed through ordination, was dependent upon nectar resource diversity (defined as the variety of nectar volume-concentration combinations available), the ratio of pollen to nectar energy, floral diversity, floral abundance, and post-fire age. (2) Bee diversity, measured as species richness, was closely linked to floral diversity (especially of annuals), nectar resource diversity, and post-fire age of the habitat. (3) The abundance of the most common species was primarily related to post-fire age, grazing intensity, and nesting substrate availability. Ordination models based on age-characteristic post-fire floral community structure explained 39-50% of overall variation observed in bee community structure. Cluster analysis showed that all the communities shared a high degree of similarity in their species composition (27-59%); however, the geographical location of sites also contributed a smaller but significant component to bee community structure. We conclude that floral resources act in specific and previously unexplored ways to modulate the diversity of the local geographic species pool, with specific disturbance factors, superimposed upon these patterns, mainly affecting the dominant species.