70 resultados para Alternative territories


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Proposals have been made for a common currency for East Asia, but the countries preparing to participate need to be in a state of economic convergence. We show that at least six countries of East Asia already satisfy this condition. There also needs to be a mechanism by which the new currency relates to other reserve currencies. We demonstrate that a numéraire could be defined solely from the actual worldwide consumption of food and energy per capita, linked to fiat currencies via world market prices. We show that real resource prices are stable in real terms, and likely to remain so. Furthermore, the link from energy prices to food commodity prices is permanent, arising from energy inputs in agriculture, food processing and distribu-tion. Calibration of currency value using a yardstick such as our SI numéraire offers an unbiased measure of the con-sistently stable cost of subsistence in the face of volatile currency exchange rates. This has the advantage that the par-ticipating countries need only agree to currency governance based on a common standards institution, a much less on-erous form of agreement than would be required in the creation of a common central bank.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ensemble learning techniques generate multiple classifiers, so called base classifiers, whose combined classification results are used in order to increase the overall classification accuracy. In most ensemble classifiers the base classifiers are based on the Top Down Induction of Decision Trees (TDIDT) approach. However, an alternative approach for the induction of rule based classifiers is the Prism family of algorithms. Prism algorithms produce modular classification rules that do not necessarily fit into a decision tree structure. Prism classification rulesets achieve a comparable and sometimes higher classification accuracy compared with decision tree classifiers, if the data is noisy and large. Yet Prism still suffers from overfitting on noisy and large datasets. In practice ensemble techniques tend to reduce the overfitting, however there exists no ensemble learner for modular classification rule inducers such as the Prism family of algorithms. This article describes the first development of an ensemble learner based on the Prism family of algorithms in order to enhance Prism’s classification accuracy by reducing overfitting.