40 resultados para Adaptive object model


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper describes a fast and reliable method for redistributing a computational mesh in three dimensions which can generate a complex three dimensional mesh without any problems due to mesh tangling. The method relies on a three dimensional implementation of the parabolic Monge–Ampère (PMA) technique, for finding an optimally transported mesh. The method for implementing PMA is described in detail and applied to both static and dynamic mesh redistribution problems, studying both the convergence and the computational cost of the algorithm. The algorithm is applied to a series of problems of increasing complexity. In particular very regular meshes are generated to resolve real meteorological features (derived from a weather forecasting model covering the UK area) in grids with over 2×107 degrees of freedom. The PMA method computes these grids in times commensurate with those required for operational weather forecasting.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We develop an on-line Gaussian mixture density estimator (OGMDE) in the complex-valued domain to facilitate adaptive minimum bit-error-rate (MBER) beamforming receiver for multiple antenna based space-division multiple access systems. Specifically, the novel OGMDE is proposed to adaptively model the probability density function of the beamformer’s output by tracking the incoming data sample by sample. With the aid of the proposed OGMDE, our adaptive beamformer is capable of updating the beamformer’s weights sample by sample to directly minimize the achievable bit error rate (BER). We show that this OGMDE based MBER beamformer outperforms the existing on-line MBER beamformer, known as the least BER beamformer, in terms of both the convergence speed and the achievable BER.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

High bandwidth-efficiency quadrature amplitude modulation (QAM) signaling widely adopted in high-rate communication systems suffers from a drawback of high peak-toaverage power ratio, which may cause the nonlinear saturation of the high power amplifier (HPA) at transmitter. Thus, practical high-throughput QAM communication systems exhibit nonlinear and dispersive channel characteristics that must be modeled as a Hammerstein channel. Standard linear equalization becomes inadequate for such Hammerstein communication systems. In this paper, we advocate an adaptive B-Spline neural network based nonlinear equalizer. Specifically, during the training phase, an efficient alternating least squares (LS) scheme is employed to estimate the parameters of the Hammerstein channel, including both the channel impulse response (CIR) coefficients and the parameters of the B-spline neural network that models the HPA’s nonlinearity. In addition, another B-spline neural network is used to model the inversion of the nonlinear HPA, and the parameters of this inverting B-spline model can easily be estimated using the standard LS algorithm based on the pseudo training data obtained as a natural byproduct of the Hammerstein channel identification. Nonlinear equalisation of the Hammerstein channel is then accomplished by the linear equalization based on the estimated CIR as well as the inverse B-spline neural network model. Furthermore, during the data communication phase, the decision-directed LS channel estimation is adopted to track the time-varying CIR. Extensive simulation results demonstrate the effectiveness of our proposed B-Spline neural network based nonlinear equalization scheme.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Land surface Processes and eXchanges (LPX) model is a fire-enabled dynamic global vegetation model that performs well globally but has problems representing fire regimes and vegetative mix in savannas. Here we focus on improving the fire module. To improve the representation of ignitions, we introduced a reatment of lightning that allows the fraction of ground strikes to vary spatially and seasonally, realistically partitions strike distribution between wet and dry days, and varies the number of dry days with strikes. Fuel availability and moisture content were improved by implementing decomposition rates specific to individual plant functional types and litter classes, and litter drying rates driven by atmospheric water content. To improve water extraction by grasses, we use realistic plant-specific treatments of deep roots. To improve fire responses, we introduced adaptive bark thickness and post-fire resprouting for tropical and temperate broadleaf trees. All improvements are based on extensive analyses of relevant observational data sets. We test model performance for Australia, first evaluating parameterisations separately and then measuring overall behaviour against standard benchmarks. Changes to the lightning parameterisation produce a more realistic simulation of fires in southeastern and central Australia. Implementation of PFT-specific decomposition rates enhances performance in central Australia. Changes in fuel drying improve fire in northern Australia, while changes in rooting depth produce a more realistic simulation of fuel availability and structure in central and northern Australia. The introduction of adaptive bark thickness and resprouting produces more realistic fire regimes in Australian savannas. We also show that the model simulates biomass recovery rates consistent with observations from several different regions of the world characterised by resprouting vegetation. The new model (LPX-Mv1) produces an improved simulation of observed vegetation composition and mean annual burnt area, by 33 and 18% respectively compared to LPX.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background Appropriately conducted adaptive designs (ADs) offer many potential advantages over conventional trials. They make better use of accruing data, potentially saving time, trial participants, and limited resources compared to conventional, fixed sample size designs. However, one can argue that ADs are not implemented as often as they should be, particularly in publicly funded confirmatory trials. This study explored barriers, concerns, and potential facilitators to the appropriate use of ADs in confirmatory trials among key stakeholders. Methods We conducted three cross-sectional, online parallel surveys between November 2014 and January 2015. The surveys were based upon findings drawn from in-depth interviews of key research stakeholders, predominantly in the UK, and targeted Clinical Trials Units (CTUs), public funders, and private sector organisations. Response rates were as follows: 30(55 %) UK CTUs, 17(68 %) private sector, and 86(41 %) public funders. A Rating Scale Model was used to rank barriers and concerns in order of perceived importance for prioritisation. Results Top-ranked barriers included the lack of bridge funding accessible to UK CTUs to support the design of ADs, limited practical implementation knowledge, preference for traditional mainstream designs, difficulties in marketing ADs to key stakeholders, time constraints to support ADs relative to competing priorities, lack of applied training, and insufficient access to case studies of undertaken ADs to facilitate practical learning and successful implementation. Associated practical complexities and inadequate data management infrastructure to support ADs were reported as more pronounced in the private sector. For funders of public research, the inadequate description of the rationale, scope, and decision-making criteria to guide the planned AD in grant proposals by researchers were all viewed as major obstacles. Conclusions There are still persistent and important perceptions of individual and organisational obstacles hampering the use of ADs in confirmatory trials research. Stakeholder perceptions about barriers are largely consistent across sectors, with a few exceptions that reflect differences in organisations’ funding structures, experiences and characterisation of study interventions. Most barriers appear connected to a lack of practical implementation knowledge and applied training, and limited access to case studies to facilitate practical learning. Keywords: Adaptive designs; flexible designs; barriers; surveys; confirmatory trials; Phase 3; clinical trials; early stopping; interim analyses

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper aims to critically examine the application of Predicted Mean Vote (PMV) in an air-conditioned environment in the hot-humid climate region. Experimental studies have been conducted in a climate chamber in Chongqing, China, from 2008 to 2010. A total of 440 thermal responses from participants were obtained. Data analysis reveals that the PMV overestimates occupants' mean thermal sensation in the warm environment (PMV > 0) with a mean bias of 0.296 in accordance with the ASHRAE thermal sensation scales. The Bland–Altman method has been applied to assess the agreement of the PMV and Actual Mean Vote (AMV) and reveals a lack of agreement between them. It is identified that habituation due to the past thermal experience of a long-term living in a specific region could stimulate psychological adaptation. The psychological adaptation can neutralize occupants’ actual thermal sensation by moderating the thermal sensibility of the skin. A thermal sensation empirical model and a PMV-revised index are introduced for air-conditioned indoor environments in hot-humid regions. As a result of habituation, the upper limit effective thermal comfort temperature SET* can be increased by 1.6 °C in a warm season based on the existing international standard. As a result, a great potential for energy saving from the air-conditioning system in summer could be achieved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A data insertion method, where a dispersion model is initialized from ash properties derived from a series of satellite observations, is used to model the 8 May 2010 Eyjafjallajökull volcanic ash cloud which extended from Iceland to northern Spain. We also briefly discuss the application of this method to the April 2010 phase of the Eyjafjallajökull eruption and the May 2011 Grímsvötn eruption. An advantage of this method is that very little knowledge about the eruption itself is required because some of the usual eruption source parameters are not used. The method may therefore be useful for remote volcanoes where good satellite observations of the erupted material are available, but little is known about the properties of the actual eruption. It does, however, have a number of limitations related to the quality and availability of the observations. We demonstrate that, using certain configurations, the data insertion method is able to capture the structure of a thin filament of ash extending over northern Spain that is not fully captured by other modeling methods. It also verifies well against the satellite observations according to the quantitative object-based quality metric, SAL—structure, amplitude, location, and the spatial coverage metric, Figure of Merit in Space.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper describes a novel on-line learning approach for radial basis function (RBF) neural network. Based on an RBF network with individually tunable nodes and a fixed small model size, the weight vector is adjusted using the multi-innovation recursive least square algorithm on-line. When the residual error of the RBF network becomes large despite of the weight adaptation, an insignificant node with little contribution to the overall system is replaced by a new node. Structural parameters of the new node are optimized by proposed fast algorithms in order to significantly improve the modeling performance. The proposed scheme describes a novel, flexible, and fast way for on-line system identification problems. Simulation results show that the proposed approach can significantly outperform existing ones for nonstationary systems in particular.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper proposes a novel adaptive multiple modelling algorithm for non-linear and non-stationary systems. This simple modelling paradigm comprises K candidate sub-models which are all linear. With data available in an online fashion, the performance of all candidate sub-models are monitored based on the most recent data window, and M best sub-models are selected from the K candidates. The weight coefficients of the selected sub-model are adapted via the recursive least square (RLS) algorithm, while the coefficients of the remaining sub-models are unchanged. These M model predictions are then optimally combined to produce the multi-model output. We propose to minimise the mean square error based on a recent data window, and apply the sum to one constraint to the combination parameters, leading to a closed-form solution, so that maximal computational efficiency can be achieved. In addition, at each time step, the model prediction is chosen from either the resultant multiple model or the best sub-model, whichever is the best. Simulation results are given in comparison with some typical alternatives, including the linear RLS algorithm and a number of online non-linear approaches, in terms of modelling performance and time consumption.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we develop a novel constrained recursive least squares algorithm for adaptively combining a set of given multiple models. With data available in an online fashion, the linear combination coefficients of submodels are adapted via the proposed algorithm.We propose to minimize the mean square error with a forgetting factor, and apply the sum to one constraint to the combination parameters. Moreover an l1-norm constraint to the combination parameters is also applied with the aim to achieve sparsity of multiple models so that only a subset of models may be selected into the final model. Then a weighted l2-norm is applied as an approximation to the l1-norm term. As such at each time step, a closed solution of the model combination parameters is available. The contribution of this paper is to derive the proposed constrained recursive least squares algorithm that is computational efficient by exploiting matrix theory. The effectiveness of the approach has been demonstrated using both simulated and real time series examples.