58 resultados para ANTHRACYCLINE ANTIBIOTICS
Resumo:
Objectives: To examine 397 strains of Salmonella enterica of human and animal origin comprising 35 serotypes for the presence of aadB, aphAI-IAB, aadA1, aadA2, bla(Carb(2)) or pse1, bla(Tem), cat1, cat2, dhfr1, floR, strA, sul1, sul2, tetA(A), tetA(B) and tetA(G) genes, the presence of class 1 integrons and the relationship of resistance genes to integrons and antibiotic resistance. Results: Some strains were resistant to ampicillin (91), chloramphenicol (85), gentamicin (2), kanamycin (14), spectinomycin (81), streptomycin (119), sulfadiazine (127), tetracycline (108) and trimethoprim (45); 219 strains were susceptible to all antibiotics. bla(Carb(2)), floR and tetA(G) genes were found in S. Typhimurium isolates and one strain of S. Emek only. Class 1 integrons were found in S. Emek, Haifa, Heidelberg, Mbandaka, Newport, Ohio, Stanley, Virchow and in Typhimurium, mainly phage types DT104 and U302. These strains were generally multi-resistant to up to seven antibiotics. Resistance to between three and six antibiotics was also associated with class 1 integron-negative strains of S. Binza, Dublin, Enteritidis, Hadar, Manhattan, Mbandaka, Montevideo, Newport, Typhimurium DT193 and Virchow. Conclusion: The results illustrate specificity of some resistance genes to S. Typhimurium or non- S. Typhimurium serotypes and the involvement of both class 1 integron and non-class 1 integron associated multi-resistance in several serotypes. These data also indicate that the bla(Carb(2)), floR and tetA(G) genes reported in the SG1 region of S. Typhimurium DT104, U302 and some other serotypes are still predominantly limited to S. Typhimurium strains.
Resumo:
Objective: To determine the effect of growth of five strains of Salmonella enterica and their isogenic multiply antibiotic-resistant (MAR) derivatives with a phenolic farm disinfectant or triclosan (biocides) upon the frequency of mutation to resistance to antibiotics or cyclohexane. Methods: Strains were grown in broth with or without the biocides and then spread on to agar containing ampicillin, ciprofloxacin or tetracycline each at 4x MIC or agar overlaid with cyclohexane. Incubation was for 24 and 48 h and the frequency of mutation to resistance was calculated for strains with and without prior growth with the biocides. MICs were determined and the presence of mutations in the acrR and marR regions was determined by sequencing and the presence of mutations in gyrA by light-cycler analysis, for a selection of the mutants that arose. Results: The mean frequency of mutation to antibiotic or cyclohexane resistance was increased similar to10- to 100-fold by prior growth with the phenolic disinfectant or triclosan. The increases were statistically significant for all antibiotics and cyclohexane following exposure to the phenolic disinfectant (P less than or equal to 0.013), and for ampicillin and cyclohexane following exposure to triclosan (P less than or equal to 0.009). Mutants inhibited by >1 mg/L ciprofloxacin arose only from strains that were MAR. Reduced susceptibility to ciprofloxacin (at 4x MIC for parent strains) alone was associated with mutations in gyrA. MAR mutants did not contain mutations in the acrR or marR region. Conclusions: These data renew fears that the use of biocides may lead to an increased selective pressure towards antibiotic resistance.
Resumo:
Objectives: To determine the mutant prevention concentrations (MPCs) of ciprofloxacin and enrofloxacin against four strains of Salmonella enterica serovar Enteritidis and four strains of S. Typhimurium including one fully susceptible, one multiply resistant (MAR), one GyrA mutant and one GyrA/MAR mutant. Further, to examine mutants arising after exposure to sub-MPC concentrations of the antibiotics for susceptibility to ciprofloxacin and enrofloxacin, and cyclohexane tolerance. Methods: MICs were determined using the agar dilution method of the BSAC. The MPC was recorded as the lowest concentration of antibiotic to inhibit growth from an inoculum of 10(10) cfu. Results: The MPCs and resulting MPC/MIC ratios of enrofloxacin were generally two- to four-fold higher than for ciprofloxacin. At 24 h for both antibiotics, MPCs were lowest for the fully susceptible strains (0.25-0.5 mg/L), similar for the MAR (1-4 mg/L) and GyrA (2-4 mg/L) mutants and highest for the GyrA/MAR mutants (1-8 mg/L). MPC/MIC ratios at 24 h were 2-16 for all strains except those for the MAR strains without mutation in gyrA where the ratios were 8-64. Conclusions: The ability to eradicate Salmonella in vivo depends on many factors such as antibiotic susceptibility of the strain, dose and route of administration. It is suggested that these MPC values will be useful when considering dosing strategies. In view of the high MPC/MIC ratio, MAR strains with wild-type gyrA, although susceptible to ciprofloxacin (MICs 0.06-0.13 mg/L), may give rise to treatment failures.
Resumo:
Spores from a number of different Bacillus species are currently being used as human and animal probiotics, although their mechanisms of action remain poorly understood. Here we describe the isolation of 237 presumptive gut-associated Bacillus spp. isolates that were obtained by heat and ethanol treatment of fecal material from organically reared broilers followed by aerobic plating. Thirty-one representative isolates were characterized according to their morphological, physiological, and biochemical properties as well as partial 16S rRNA gene sequences and screening for the presence of plasmid DNA. The Bacillus species identified included B. subtilis, B. pumilus, B. licheniformis, B. clausii, B. megaterium, B. firmus, and species of the B. cereus group, whereas a number of our isolates could not be classified. Intrinsic properties of potential importance for survival in the gut that could be advantageous for spore-forming probiotics were further investigated for seven isolates belonging to five different species. All isolates sporulated efficiently in the laboratory, and the resulting spores were tolerant to simulated gastrointestinal tract conditions. They also exhibited antimicrobial activity against a broad spectrum of bacteria, including food spoilage and pathogenic organisms such as Bacillus spp., Clostridium perfringens, Staphylococcus aureus, and Listeria monocytogenes. Importantly, the isolates were susceptible to most of the antibiotics tested, arguing that they would not act as donors for resistance determinants if introduced in the form of probiotic preparations. Together, our results suggest that some of the sporeformers isolated in this study have the potential to persist in or transiently associate with the complex gut ecosystem.
Resumo:
Aims: Quinolone antibiotics are the agents of choice for treating systemic Salmonella infections. Resistance to quinolones is usually mediated by mutations in the DNA gyrase gene gyrA. Here we report the evaluation of standard HPLC equipment for the detection of mutations (single nucleotide polymorphisms; SNPs) in gyrA, gyrB, parC and parE by denaturing high performance liquid chromatography (DHPLC). Methods: A panel of Salmonella strains was assembled which comprised those with known different mutations in gyrA (n = 8) and fluoroquinolone-susceptible and -resistant strains (n = 50) that had not been tested for mutations in gyrA. Additionally, antibiotic-susceptible strains of serotypes other than Salmonella enterica serovar Typhimurium strains were examined for serotype-specific mutations in gyrB (n = 4), parC (n = 6) and parE (n = 1). Wild-type (WT) control DNA was prepared from Salmonella Typhimurium NCTC 74. The DNA of respective strains was amplified by PCR using Optimase (R) proofreading DNA polymerase. Duplex DNA samples were analysed using an Agilent A1100 HPLC system with a Varian Helix (TM) DNA column. Sequencing was used to validate mutations detected by DHPLC in the strains with unknown mutations. Results: Using this HPLC system, mutations in gyrA, gyrB, parC and parE were readily detected by comparison with control chromatograms. Sequencing confirmed the gyrA predicted mutations as detected by DHPLC in the unknown strains and also confirmed serotype-associated sequence changes in non-Typhimurium serotypes. Conclusions: The results demonstrated that a non-specialist standard HPLC machine fitted with a generally available column can be used to detect SNPs in gyrA, gyrB, parC and parE genes by DHPLC. Wider applications should be possible.
Resumo:
Objectives: To determine the efficacy of enrofloxacin (Baytril) in chickens in eradicating three different resistance phenotypes of Salmonella enterica and to examine the resistance mechanisms of resulting mutants. Methods: In two separate replicate experiments (I and 11), three strains of Salmonella enterica serovar Typhimurium DT104 [strain A, fully antibiotic-sensitive strain; strain B, isogenic multiple antibiotic-resistant (MAR) derivative of A; strain C, veterinary penta-resistant phenotype strain containing GyrA Phe-83], were inoculated into day-old chicks at similar to 10(3) Cfu/bird. At day 10, groups of chicks (n =10) were given either enrofloxacin at 50 ppm in their drinking water for 5 days or water alone (control). Caecal contents were monitored for presence of Salmonella and colonies were replica plated to media containing antibiotics or overlaid with cyclohexane to determine the proportion of isolates with reduced susceptibility. The MICs of antibiotics and cyclohexane tolerance were determined for selected isolates from the chicks. Mutations in topoisomerase genes were examined by DHPLC and expression of marA, soxS, acrB, acrD and acrF by RT-PCR. Results: In experiment 1, but not 11, enrofloxacin significantly reduced the numbers of strain A compared with the untreated control group. In experiment 11, but not 1, enrofloxacin significantly reduced the numbers of strain B. Shedding of strain C was unaffected by enrofloxacin treatment. Birds infected with strains A and B gave rise to isolates with decreased fluoroquinolone susceptibility. Isolates derived from strain A or B requiring > 128 mg/L nalidixic acid for inhibition contained GyrA Asn-82 or Phe-83. Isolates inhibited by 16 mg/L nalidixic acid were also less susceptible to antibiotics of other chemical classes and became cyclohexane-tolerant (e.g. MAR). Conclusions: These studies demonstrate that recommended enrofloxacin treatment of chicks rapidly selects for strains with reduced fluoroquinolone susceptibility from fully sensitive and MAR strains. It can also select for MAR isolates.
The AcrAB-TolC efflux system of Salmonella enterica serovar Typhimurium plays a role in pathogenesis
Resumo:
The ability of an isogenic set of mutants of Salmonella enterica serovar Typhimurium L354 (SL1344) with defined deletions in genes encoding components of tripartite efflux pumps, including acrB, acrD, acrF and tolC, to colonize chickens was determined in competition with L354. In addition, the ability of L354 and each mutant to adhere to, and invade, human embryonic intestine cells and mouse monocyte macrophages was determined in vitro. The tolC and acrB knockout mutants were hyper-susceptible to a range of antibiotics, dyes and detergents; the tolC mutant was also more susceptible to acid pH and bile and grew more slowly than L354. Complementation of either gene ablated the phenotype. The tolC mutant poorly adhered to both cell types in vitro and was unable to invade macrophages. The acrB mutant adhered, but did not invade macrophages. In vivo, both the acrB mutant and the tolC mutant colonized poorly and did not persist in the avian gut, whereas the acrD and acrF mutant colonized and persisted as well as L354. These data indicate that the AcrAB-TolC system is important for the colonization of chickens by S. Typhimurium and that this system has a role in mediating adherence and uptake into target host cells.
Resumo:
Objectives: The physiological response of Salmonella enterica serovar Typhimurium to fluoroquinolone antibiotics was investigated using proteomic methods. Methods: Proteomes were prepared from strain SL1344 following treatment of broth cultures with ciprofloxacin (0.03 and 0.008 mg/L; 2x and 0.5x MIC) and enrofloxacin (0.03 mg/L) and from a multiple antibiotic resistant (MAR) mutant. Protein expression was determined by two-dimensional HPLC-MSn and also after exposure to ciprofloxacin by two-dimensional gel electrophoresis (2D-GE). Results: The number of proteins (mean +/- SD) detected by 2D-GE derived from control cultures of the wild-type strain was significantly (P < 0.05) reduced from 296 +/- 77 to 153 +/- 36 following treatment with ciprofloxacin (0.03 mg/L). Raised expression (P < 0.05) of 17 proteins was also detected, and increases of up to 8-fold (P < 0.0001) were observed for subunits of F1F0-ATP synthase, TolC and Imp. Analysis by two-dimensional HPLC-MSn provided higher proteome coverage with 787 +/- 50 proteins detected, which was reduced (P < 0.005) to 560 +/- 14 by ciprofloxacin (0.03 mg/L). Increased expression of 43 proteins was observed which included those detected by 2D-GE and additionally the efflux pump protein AcrB. The basal expression of the AcrAB/TolC efflux pump was elevated in the MAR mutant compared with the untreated wild-type and augmented following treatment with ciprofloxacin (0.03 mg/L). F1F0-ATP synthase and Imp were only elevated in the mutant when treated with ciprofloxacin. Conclusions: These studies suggest that increased expression of AcrAB/TolC was associated with resistance while other increases, such as in F1F0-ATP synthase and Imp, were a response to fluoroquinolone.
Resumo:
Objectives: To study how disinfectants affect antimicrobial susceptibility and phenotype of Salmonella enterica serovar Typhimurium SL1344. Methods: Wild-type strain SL1344 and its isogenic gyrA mutant were passaged daily for 7 days in subinhibitory concentrations, and separately for 16 days in gradually increasing concentrations of a quaternary ammonium disinfectant containing formaldehyde and glutaraldehyde (QACFG), an oxidizing compound blend (OXC), a phenolic tar acids-based disinfectant (TOP) and triclosan. The MICs of antimicrobials and antibiotics for populations and representative isolates and the proportion of cells resistant to the MICs for the wild-type were determined. Expression of acrB gene, growth at 37 degrees C and invasiveness of populations in Caco-2 intestinal epithelial cells were assessed. Results: QACFG and triclosan showed the highest selectivity for variants with reduced susceptibility to chloramphenicol, tetracycline, ampicillin, acriflavine and triclosan. Populations treated with the above biocides had reduced invasiveness in Caco-2 cells, and altered growth kinetics. Resistance to disinfectants was observed only after exposure to gradually increasing concentrations of triclosan, accompanied with a 2000-fold increase in its MIC. Growth in OXC and TOP did not affect the MICs of antibiotics, but resulted in the appearance of a proportion of cells resistant to the MIC of acriflavine and triclosan for the wild-type. Randomly selected stable variants from all populations, except the one treated with TOP, over-expressed acrB. Conclusions: In vitro exposure to QACFG and triclosan selects for Salmonella Typhimurium cells with reduced susceptibility to several antibiotics. This is associated with overexpression of AcrAB efflux pump, but accompanied with reduced invasiveness.
Resumo:
Aim: To develop a list of prescribing indicators specific for the hospital setting that would facilitate the prospective collection of high severity and/or high frequency prescribing errors, which are also amenable to electronic clinical decision support (CDS). Method: A three-stage consensus technique (electronic Delphi) was carried out with 20 expert pharmacists and physicians across England. Participants were asked to score prescribing errors using a 5-point Likert scale for their likelihood of occurrence and the severity of the most likely outcome. These were combined to produce risk scores, from which median scores were calculated for each indicator across the participants in the study. The degree of consensus between the participants was defined as the proportion that gave a risk score in the same category as the median. Indicators were included if a consensus of 80% or more was achieved. Results: A total of 80 prescribing errors were identified by consensus as being high or extreme risk. The most common drug classes named within the indicators were antibiotics (n=13), antidepressants (n=8), nonsteroidal anti-inflammatory drugs (n=6), and opioid analgesics (n=6).The most frequent error type identified as high or extreme risk were those classified as clinical contraindications (n=29/80). Conclusion: 80 high risk prescribing errors in the hospital setting have been identified by an expert panel. These indicators can serve as the basis for a standardised, validated tool for the collection of data in both paperbased and electronic prescribing processes, as well as to assess the impact of electronic decision support implementation or development.
Resumo:
This paper explores the potential of polysialic acid (PSA) as a carrier for low molecular weight anticancer drugs. A PSA–epirubicin (Epi) conjugate was synthesized and compared against Epi conjugates containing established carriers, namely: N-(2-hydroxypropyl) methacrylamide (HPMA) copolymers, poly(ethylene glycol) (PEG) and polyglutamic acid (PGA). Biological assessments in the breast cancer cell line MCF-7 and in the anthracycline resistant MCF-7/DX showed that the PSA–Epi conjugate had the highest activity (40% and 30% cell death in the two cell lines at 1 mM Epi equiv., respectively). FACS studies confirmed internalization of all conjugates by cholesterol-dependent endocytosis. PSA–Epi showed release of Epi (40% at 5 h) when incubated with lysosome extracts. In vivo evaluation showed that all conjugates had a significantly longer half-life compared to free Epi. This study also allowed an investigation on the effect of the polymeric carrier on the biological activity of a conjugate, with the biodegradability of the carrier emerging as an important feature.
Resumo:
The last decade has seen successful clinical application of polymer–protein conjugates (e.g. Oncaspar, Neulasta) and promising results in clinical trials with polymer–anticancer drug conjugates. This, together with the realisation that nanomedicines may play an important future role in cancer diagnosis and treatment, has increased interest in this emerging field. More than 10 anticancer conjugates have now entered clinical development. Phase I/II clinical trials involving N-(2-hydroxypropyl)methacrylamide (HPMA) copolymer-doxorubicin (PK1; FCE28068) showed a four- to fivefold reduction in anthracycline-related toxicity, and, despite cumulative doses up to 1680 mg/m2 (doxorubicin equivalent), no cardiotoxicity was observed. Antitumour activity in chemotherapy-resistant/refractory patients (including breast cancer) was also seen at doxorubicin doses of 80–320 mg/m2, consistent with tumour targeting by the enhanced permeability (EPR) effect. Hints, preclinical and clinical, that polymer anthracycline conjugation can bypass multidrug resistance (MDR) reinforce our hope that polymer drugs will prove useful in improving treatment of endocrine-related cancers. These promising early clinical results open the possibility of using the water-soluble polymers as platforms for delivery of a cocktail of pendant drugs. In particular, we have recently described the first conjugates to combine endocrine therapy and chemotherapy. Their markedly enhanced in vitro activity encourages further development of such novel, polymer-based combination therapies. This review briefly describes the current status of polymer therapeutics as anticancer agents, and discusses the opportunities for design of second-generation, polymer-based combination therapy, including the cocktail of agents that will be needed to treat resistant metastatic cancer.
Resumo:
Prostaglandins (PG) are bioactive lipids derived from the metabolism of membrane polyunsaturated fatty acids (PUFA), and play important roles in a number of biological processes including cell division, immune responses and wound healing. Cyclooxygenase (COX) is the key enzyme in PG synthesis from arachidonic acid. The hypothesis of the present study was that expression of COX-2 in porcine intestine was dependent on the microbial load and the age of piglets. Piglets were obtained from sows raised either on outdoor free-range farms or on indoor commercial farms, and littermates were divided into three treatments: One group of piglets suckled the sow, a second group was put into an isolator and fed a milk formula, and a third group was put into the isolator fed milk formula and injected with broad spectrum antibiotics. Samples were collected from the 75% level of the small intestine at day 5, 28 and 56 of age. Tissue section from four piglets from each of these six treatment groups was analysed by immunofluorescence for COX-2 and type-IV collagen (basement membrane, defining lamina propria (LP)). Image analysis was used to determine the number of positive pixels expressing LP and epithelial COX-2. COX-2 expressing cells were observed in LP and epithelium in all porcine intestinal samples. When analysing images obtained on day 28, injection of antibiotics seemed to reduce the COX-2 expression in intestinal samples of piglets when compared to other treatments (P=0.053). No significant effect of farm, treatments or age of piglets was observed on COX-2 expressing data when analysing all data of images obtained at day 28 and 56. By double-labelling experiments, COX-2 was found not to be expressed on cell co-expressing CD45, CD16, CD163 or CD2, thus indicating that mucosal leukocytes, including dendritic cells, macrophages and NK cells did not express COX-2. Future research should investigate the role of COX-2 expression in the digestive tract in relation to pig health.
Resumo:
The intestinal microbiota is a dynamic multifaceted ecosystem which has evolved a complex and mutually beneficial relationship with the mammalian host. The contribution to host fitness is evident, but in recent years it has become apparent that these commensal microorganisms may exert far more influence over health and disease than previously thought. The gut microbiota are implicated in many aspects of biological function, such as metabolism, angiogenesis and immune development: disruption, especially during the neonatal period, which may impose life-long penalty. Elimination of the microbiota appears difficult, but manipulation of the ratios and dominance of composite populations can be achieved by alterations in diet, rearing environment, antibiotics and/or probiotics. Components of the intestinal microbiota are frequently documented to affect normal function of the mucosal immune system in experimental animals and in domesticated, agricultural species. However, it is not always clear that the effects described are sufficiently well understood to provide a sound basis for commercial intervention. Some microbial interventions may be beneficial to the host under particular circumstances, while detrimental during others. It is essential that we further our understanding of the complex and intricate host-commensal relationship to avoid causing more long-term damage than advantage
Resumo:
A recently developed capillary electrophoresis (CE)-negative-ionisation mass spectrometry (MS) method was used to profile anionic metabolites in a microbial-host co-metabolism study. Urine samples from rats receiving antibiotics (penicillin G and streptomycin sulfate) for 0, 4, or 8 days were analysed. A quality control sample was measured repeatedly to monitor the performance of the applied CE-MS method. After peak alignment, relative standard deviations (RSDs) for migration time of five representative compounds were below 0.4 %, whereas RSDs for peak area were 7.9–13.5 %. Using univariate and principal component analysis of obtained urinary metabolic profiles, groups of rats receiving different antibiotic treatment could be distinguished based on 17 discriminatory compounds, of which 15 were downregulated and 2 were upregulated upon treatment. Eleven compounds remained down- or upregulated after discontinuation of the antibiotics administration, whereas a recovery effect was observed for others. Based on accurate mass, nine compounds were putatively identified; these included the microbial-mammalian co-metabolites hippuric acid and indoxyl sulfate. Some discriminatory compounds were also observed by other analytical techniques, but CE-MS uniquely revealed ten metabolites modulated by antibiotic exposure, including aconitic acid and an oxocholic acid. This clearly demonstrates the added value of CE-MS for nontargeted profiling of small anionic metabolites in biological samples.