68 resultados para AC motor drive
Resumo:
The Functional Rating Scale Taskforce for pre-Huntington Disease (FuRST-pHD) is a multinational, multidisciplinary initiative with the goal of developing a data-driven, comprehensive, psychometrically sound, rating scale for assessing symptoms and functional ability in prodromal and early Huntington disease (HD) gene expansion carriers. The process involves input from numerous sources to identify relevant symptom domains, including HD individuals, caregivers, and experts from a variety of fields, as well as knowledge gained from the analysis of data from ongoing large-scale studies in HD using existing clinical scales. This is an iterative process in which an ongoing series of field tests in prodromal (prHD) and early HD individuals provides the team with data on which to make decisions regarding which questions should undergo further development or testing and which should be excluded. We report here the development and assessment of the first iteration of interview questions aimed to assess functional impact of motor manifestations in prHD and early HD individuals.
Resumo:
Although the Unified Huntington's Disease Rating Scale (UHDRS) is widely used in the assessment of Huntington disease (HD), the ability of individual items to discriminate individual differences in motor or behavioral manifestations has not been extensively studied in HD gene expansion carriers without a motor-defined clinical diagnosis (ie, prodromal-HD or prHD). To elucidate the relationship between scores on individual motor and behavioral UHDRS items and total score for each subscale, a nonparametric item response analysis was performed on retrospective data from 2 multicenter longitudinal studies. Motor and behavioral assessments were supplied for 737 prHD individuals with data from 2114 visits (PREDICT-HD) and 686 HD individuals with data from 1482 visits (REGISTRY). Option characteristic curves were generated for UHDRS subscale items in relation to their subscale score. In prHD, overall severity of motor signs was low, and participants had scores of 2 or above on very few items. In HD, motor items that assessed ocular pursuit, saccade initiation, finger tapping, tandem walking, and to a lesser extent, saccade velocity, dysarthria, tongue protrusion, pronation/supination, Luria, bradykinesia, choreas, gait, and balance on the retropulsion test were found to discriminate individual differences across a broad range of motor severity. In prHD, depressed mood, anxiety, and irritable behavior demonstrated good discriminative properties. In HD, depressed mood demonstrated a good relationship with the overall behavioral score. These data suggest that at least some UHDRS items appear to have utility across a broad range of severity, although many items demonstrate problematic features.
Resumo:
The human mirror neuron system (hMNS) is believed to provide a basic mechanism for social cognition. Event-related desynchronization (ERD) in alpha (8–12 Hz) and low beta band (12–20 Hz) over sensori-motor cortex has been suggested to index mirror neurons' activity. We tested whether autistic traits revealed by high and low scores on the Autistic Quotient (AQ) in the normal population are linked to variations in the electroencephalogram (EEG) over motor, pre-motor cortex and supplementary motor area (SMA) during action observation. Results revealed that in the low AQ group, the pre-motor cortex and SMA were more active during hand action than static hand observation whereas in the high AQ group the same areas were active both during static and hand action observation. In fact participants with high traits of autism showed greater low beta ERD while observing the static hand than those with low traits and this low beta ERD was not significantly different when they watched hand actions. Over primary motor cortex, the classical alpha and low beta ERD during hand actions relative to static hand observation was found across all participants. These findings suggest that the observation–execution matching system works differently according to the degree of autism traits in the normal population and that this is differentiated in terms of the EEG according to scalp site and bandwidth.
Resumo:
Recent research in social neuroscience proposes a link between mirror neuron system (MNS) and social cognition. The MNS has been proposed to be the neural mechanism underlying action recognition and intention understanding and more broadly social cognition. Pre-motor MNS has been suggested to modulate the motor cortex during action observation. This modulation results in an enhanced cortico-motor excitability reflected in increased motor evoked potentials (MEPs) at the muscle of interest during action observation. Anomalous MNS activity has been reported in the autistic population whose social skills are notably impaired. It is still an open question whether traits of autism in the normal population are linked to the MNS functioning. We measured TMS-induced MEPs in normal individuals with high and low traits of autism as measured by the autistic quotient (AQ), while observing videos of hand or mouth actions, static images of a hand or mouth or a blank screen. No differences were observed between the two while they observed a blank screen. However participants with low traits of autism showed significantly greater MEP amplitudes during observation of hand/mouth actions relative to static hand/mouth stimuli. In contrast, participants with high traits of autism did not show such a MEP amplitude difference between observation of actions and static stimuli. These results are discussed with reference to MNS functioning.
Resumo:
The intake fraction (iF) of nonreactive constituents of exhaust from mobile vehicles in the urban area of HongKong is investigated using available monitoring data for carbon monoxide (CO) as a tracer of opportunity. Correcting for regional transport of carbon monoxide into HongKong, the annual-average iF for nonreactive motor vehicle emissions within the city is estimated to be around 270 per million. This estimated iF is much higher than values previously reported for vehicle emissions in US urban areas, Helsinki and Beijing, and somewhat lower than those reported for a densely populated street canyon in downtown Manhattan, New York City, or for emissions into indoor environments. The reported differences in intakefractions in various cities mainly result from the differences in local population densities. Our analysis highlights the importance of accounting for the influence of upwind transport of pollutants when using ambient data to estimate iF for an urban area. For vehicleexhaust in HongKong, it is found that the in/near vehicle microenvironment contributes similarly to the indoor home environment when accounting for the overall iF for children and adults. Keywords Intakefraction; Vehicle emission; Regional pollutant transport; Carbon monoxide; Exposure
Resumo:
Bimanual actions impose intermanual coordination demands not present during unimanual actions. We investigated the functional neuroanatomical correlates of these coordination demands in motor imagery (MI) of everyday actions using functional magnetic resonance imaging (fMRI). For this, 17 participants imagined unimanual actions with the left and right hand as well as bimanual actions while undergoing fMRI. A univariate fMRI analysis showed no reliable cortical activations specific to bimanual MI, indicating that intermanual coordination demands in MI are not associated with increased neural processing. A functional connectivity analysis based on psychophysiological interactions (PPI), however, revealed marked increases in connectivity between parietal and premotor areas within and between hemispheres. We conclude that in MI of everyday actions intermanual coordination demands are primarily met by changes in connectivity between areas and only moderately, if at all, by changes in the amount of neural activity. These results are the first characterization of the neuroanatomical correlates of bimanual coordination demands in MI. Our findings support the assumed equivalence of overt and imagined actions and highlight the differences between uni- and bimanual actions. The findings extent our understanding of the motor system and may aid the development of clinical neurorehabilitation approaches based on mental practice.
Resumo:
Prediction mechanism is necessary for human visual motion to compensate a delay of sensory-motor system. In a previous study, “proactive control” was discussed as one example of predictive function of human beings, in which motion of hands preceded the virtual moving target in visual tracking experiments. To study the roles of the positional-error correction mechanism and the prediction mechanism, we carried out an intermittently-visual tracking experiment where a circular orbit is segmented into the target-visible regions and the target-invisible regions. Main results found in this research were following. A rhythmic component appeared in the tracer velocity when the target velocity was relatively high. The period of the rhythm in the brain obtained from environmental stimuli is shortened more than 10%. The shortening of the period of rhythm in the brain accelerates the hand motion as soon as the visual information is cut-off, and causes the precedence of hand motion to the target motion. Although the precedence of the hand in the blind region is reset by the environmental information when the target enters the visible region, the hand motion precedes the target in average when the predictive mechanism dominates the error-corrective mechanism.
Resumo:
Our aim is to reconstruct the brain-body loop of stroke patients via an EEG-driven robotic system. After the detection of motor command generation, the robotic arm should assist patient’s movement at the correct moment and in a natural way. In this study we performed EEG measurements from healthy subjects performing discrete spontaneous motion. An EEG analysis based on the temporal correlation of the brain activity was employed to determine the onset of single motion motor command generation.
Resumo:
A new wire mechanism called Redundant Drive Wire Mechanism (RDWM) is proposed. The purpose of this paper is to build up the theory of a RDWM with fast motion and fine motion. First, the basic concepts of the proposed mechanism is presented. Second, the vector closure condition for the proposed mechanism is developed. Next, we present the basic equations, propose the basic structure of RDWM with the Internal DOF module, Double Actuation Modules and Precision Modules together with the properties of the mechanism. Finally, we conduct the simulation to show the validity of the RDWM.
Resumo:
In this paper, we propose a new velocity constraint type for Redundant Drive Wire Mechanisms. The purpose of this paper is to demonstrate that the proposed velocity constraint module can fix the orientation of the movable part and to use the kinematical analysis method to obtain the moving direction of the movable part. First, we discuss the necessity of using this velocity constraint type and the possible applications of the proposed mechanism. Second, we derive the basic equations of a wire mechanism with this constraint type. Next, we present a method of motion analysis on active and passive constraint spaces, which is used to find the moving direction of a movable part. Finally, we apply the above analysis method on a wire mechanism with a velocity constraint module and on a wire mechanism with four double actuator modules. By evaluating the results, we prove the validity of the proposed constraint type.