89 resultados para ABDOMINAL FAT
Resumo:
Hypertension is a key feature of the metabolic syndrome. Lifestyle and dietary changes may affect blood pressure (BP), but the knowledge of the effects of dietary fat modification in subjects with the metabolic syndrome is limited. The objective of the present study was to investigate the effect of an isoenergetic change in the quantity and quality of dietary fat on BP in subjects with the metabolic syndrome. In a 12-week European multi-centre, parallel, randomised controlled dietary intervention trial (LIPGENE), 486 subjects were assigned to one of the four diets distinct in fat quantity and quality: two high-fat diets rich in saturated fat or monounsaturated fat and two low-fat, high-complex carbohydrate diets with or without 1·2 g/d of very long-chain n-3 PUFA supplementation. There were no overall differences in systolic BP (SBP), diastolic BP or pulse pressure (PP) between the dietary groups after the intervention. The high-fat diet rich in saturated fat had minor unfavourable effects on SBP and PP in males.
Resumo:
Background:Excessive energy intake and obesity lead to the metabolic syndrome (MetS). Dietary saturated fatty acids (SFAs) may be particularly detrimental on insulin sensitivity (SI) and on other components of the MetS. Objective:This study determined the relative efficacy of reducing dietary SFA, by isoenergetic alteration of the quality and quantity of dietary fat, on risk factors associated with MetS. Design:A free-living, single-blinded dietary intervention study. Subjects and Methods:MetS subjects (n=417) from eight European countries completed the randomized dietary intervention study with four isoenergetic diets distinct in fat quantity and quality: high-SFA; high-monounsaturated fatty acids and two low-fat, high-complex carbohydrate (LFHCC) diets, supplemented with long chain n-3 polyunsaturated fatty acids (LC n-3 PUFAs) (1.2 g per day) or placebo for 12 weeks. SI estimated from an intravenous glucose tolerance test (IVGTT) was the primary outcome measure. Lipid and inflammatory markers associated with MetS were also determined. Results:In weight-stable subjects, reducing dietary SFA intake had no effect on SI, total and low-density lipoprotein cholesterol concentration, inflammation or blood pressure in the entire cohort. The LFHCC n-3 PUFA diet reduced plasma triacylglycerol (TAG) and non-esterified fatty acid concentrations (P<0.01), particularly in men. Conclusion:There was no effect of reducing SFA on SI in weight-stable obese MetS subjects. LC n-3 PUFA supplementation, in association with a low-fat diet, improved TAG-related MetS risk profiles.
Resumo:
The objectives of the present study were 1) to evaluate the effects of supplemental fat and ME intake on plasma concentrations of glucagon-like peptide-1 (GLP-1), cholecystokinin (CCK), glucose-dependent insulinotropic polypeptide, ghrelin, and oxyntomodulin; and 2) to determine the association of these peptides with DMI and the hypothalamic concentration of mRNA for the following neuropeptides: neuropeptide Y (NPY), agouti-related peptide (AgRP), and proopiomelanocortin (POMC). In a completely randomized block design with a 2 x 2 factorial arrangement of treatments, 32 pens with 2 wethers each were restricted-fed (2.45 Mcal/lamb per day) or offered diets ad libitum (n = 16) with or without 6% supplemental fat (n = 16) for a period of 30 d. Dry matter intake was measured daily. On d 8, 15, 22, and 29, BW was measured before feeding, and 6 h after feeding, blood samples were collected for plasma measurement of insulin, GLP-1, CCK, ghrelin, glucose-dependent insulinotropic polypeptide, oxyntomodulin, glucose, and NEFA concentrations. On d 29, blood was collected 30 min before feeding for the same hormone and metabolite analyses. At the end of the experiment, wethers were slaughtered and the hypothalami were collected to measure concentrations of NPY, AgRP, and POMC mRNA. Offering feed ad libitum (resulting in greater ME intake) increased plasma insulin and NEFA concentrations (P = 0.02 and 0.02, respectively) and decreased hypothalamic mRNA expression of NPY and AgRP (P = 0.07 and 0.02, respectively) compared with the restricted-fed wethers. There was a trend for the addition of dietary fat to decrease DMI (P = 0.12). Addition of dietary fat decreased insulin and glucose concentrations (P < 0.05 and 0.01, respectively) and tended to increase hypothalamic mRNA concentrations for NPY and AgRP (P = 0.07 and 0.11, respectively). Plasma GLP-1 and CCK concentrations increased in wethers offered feed ad libitum compared with restricted-fed wethers, but the response was greater when wethers were offered feed ad libitum and had supplemental fat in the diet (fat x intake interaction, P = 0.04). The prefeeding plasma ghrelin concentration was greater in restricted-fed wethers compared with those offered feed ad libitum, but the concentrations were similar 6 h after feeding (intake x time interaction, P < 0.01). Supplemental dietary fat did not affect (P = 0.22) plasma ghrelin concentration. We conclude that insulin, ghrelin, CCK, and GLP-1 may regulate DMI in sheep by regulating the hypothalamic gene expression of NPY, AgRP, and POMC.
Resumo:
A cause and effect relationship between glucagon-like peptide 1 (7, 36) amide (GLP-1) and cholecystokinin (CCK) and DMI regulation has not been established in ruminants. Three randomized complete block experiments were conducted to determine the effect of feeding fat or infusing GLP-1 or CCK intravenously on DMI, nutrient digestibility, and Cr rate of passage (using Cr(2)O(3) as a marker) in wethers. A total of 18 Targhee × Hampshire wethers (36.5 ± 2.5 kg of BW) were used, and each experiment consisted of four 21-d periods (14 d for adaptation and 7 d for infusion and sampling). Wethers allotted to the control treatments served as the controls for all 3 experiments; experiments were performed simultaneously. The basal diet was 60% concentrate and 40% forage. In Exp. 1, treatments were the control (0% added fat) and addition of 4 or 6% Ca salts of palm oil fatty acids (DM basis). Treatments in Exp. 2 and 3 were the control and 3 jugular vein infusion dosages of GLP-1 (0.052, 0.103, or 0.155 µg•kg of BW(-1)•d(-1)) or CCK (0.069, 0.138, or 0.207 µg•kg of BW(-1)•d(-1)), respectively. Increases in plasma GLP-1 and CCK concentrations during hormone infusions were comparable with increases observed when increasing amounts of fat were fed. Feeding fat and infusion of GLP-1 tended (linear, P = 0.12; quadratic, P = 0.13) to decrease DMI. Infusion of CCK did not affect (P > 0.21) DMI. Retention time of Cr in the total gastrointestinal tract decreased (linear, P < 0.01) when fat was fed, but was not affected by GLP-1 or CCK infusion. In conclusion, jugular vein infusion produced similar plasma CCK and GLP-1 concentrations as observed when fat was fed. The effects of feeding fat on DMI may be partially regulated by plasma concentration of GLP-1, but are not likely due solely to changes in a single hormone concentration.
Resumo:
The present study was carried out to determine whether cephalic stimulation, associated with eating a meal, was sufficient stimulus to provoke the release of stored triacylglycerol (TAG) from a previous high-fat meal. Ten subjects were studied on three separate occasions. Following a 12 h overnight fast, subjects were given a standard mixed test meal which contained 56 g fat. Blood samples were taken before the meal and for 5 h after the meal when the subjects were randomly allocated to receive either water (control) or were modified sham fed a low-fat (6 g fat) or moderate-fat (38 g fat) meal. Blood samples were collected for a further 3 h. Compared with the control, modified sham feeding a low- or moderate-fat meal did not provoke an early entry of TAG, analysed in either plasma or TAG-rich lipoprotein (TRL) fraction (density ,1´006 kg/l). The TRL-retinyl ester data showed similar findings. A cephalic phase secretion of pancreatic polypeptide, without a significant increase in cholecystokinin levels, was observed on modified sham feeding. Although these data indicate that modified sham feeding was carried out successfully, analysis of the fat content of the expectorant showed that our subjects may have accidentally ingested a small amount of fat (0´7 g for the low-fat meal and 2´4 g for the moderate-fat meal). Nevertheless, an early TAG peak following modified sham feeding was not demonstrated in the present study, suggesting that significant ingestion of food, and not just orosensory stimulation, is necessary to provoke the release of any TAG stored from a previous meal.
Resumo:
OBJECTIVE: Substrate and hormone responses to meals of differing fat content were evaluated in normal subjects in order to investigate mechanisms underlying the regulation of postprandial lipoprotein concentration. DESIGN: A randomised cross-over study with three different meals on three occasions. SETTING: Free-living subjects associated with Surrey University. SUBJECTS: Ten male volunteers (aged 18-23 years) were recruited. INTERVENTIONS: Three test meals containing 20, 40 or 80 g fat but identical carbohydrate and protein content were randomly allocated to volunteers. MAJOR OUTCOME MEASURES: Pre- and postprandial blood samples were taken for the analysis of plasma triacylglycerol, non-esterified fatty acids, glucose, immunoreactive insulin and glucose-dependent insulinotrophic polypeptide levels and postheparin lipoprotein lipase activity measurements. RESULTS: Peak triacylglycerol concentrations and lipoprotein lipase activity measurements were significantly higher following the 80 g than the 20 g fat meal (P = 0.009 and P = 0.049 respectively). Areas under the glucose-dependent insulinotrophic polypeptide time-response concentration curves were significantly higher following the 80 g compared with the 20 g fat meal (P = 0.04), but no differences in insulin response to the meals were seen. The 30-360 min decrease in the non-esterified fatty acid concentration was less following the 80 g than the 20 g meal (P = 0.001). CONCLUSIONS: The results suggest that glucose-dependent insulinotrophic polypeptide may mediate increased lipoprotein lipase activity in response to fat-containing meals and may play a role in circulating lipoprotein homeostasis. This mechanism may be overloaded with high fat meals with adverse consequences on circulating triacylglycerol and NEFA concentrations.
Resumo:
The primary objective was to compare the fat and fatty acid contents of cooked retail chickens from intensive and free range systems. Total fat comprised approximately 14, 2.5, 8, 9 and 15 g/100 g cooked weight in whole birds, skinless breast, breast with skin, skinless leg and leg meat with skin, respectively, with no effect of intensive compared with free range systems. Free range breast and leg meat contained significantly less polyunsaturated fatty acids (n-6 and n-3) than did those from intensive rearing and had a consistently higher n-6/n-3 ratio (6.0 vs. 7.9). Generally, the concentrations of long chain n-3 fatty acids were considerably lower than those reported in earlier research studies. Overall, there was no evidence that meat from free range chickens had a fatty acid profile that would be classified as healthier than that from intensively reared birds and indeed, in some aspects, the opposite was the case. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
1. Nicotine has been implicated as a causative factor in the intrauterine growth retardation associated with smoking in pregnancy. A study was set up to ascertain the effect of nicotine on fetal growth and whether this could be related to the actions of this drug on maternal adipose tissue metabolism. 2. Sprague-Dawley rats were mated and assigned to control and nicotine groups, the latter receiving nicotine in the drinking-water throughout pregnancy. Animals were weighed at regular intervals and killed on day 20 of pregnancy. Rates of maternal adipose tissue lipolysis and lipogenesis were measured. Fetal and placental weights were recorded and analysis of fetal body water, fat, protein and DNA carried out. 3. Weight gains of mothers in the nicotine group were less in the 1st and 2nd weeks of pregnancy, but similar to controls in the 3rd week. Fetal body-weights, DNA, protein and percentage water contents were similar in both groups. Mean fetal body fat (g/kg) was significantly higher in the nicotine group (96.2 (SE 5.1)) compared with controls (72.0 (SE 2.9)). Rates of maternal lipolysis were also higher in the nicotine group. 4. The cause of these differences and their effects on maternal and fetal well-being is discussed.