33 resultados para 690200 Water Transport
Resumo:
This paper examines the role of the Arctic Ocean Atlantic water (AW) in modifying the Laptev Sea shelf bottom hydrography on the basis of historical records from 1932 to 2008, field observations carried out in April–May 2008, and 2002–2009 cross‐slope measurements. A climatology of bottom hydrography demonstrates warming that extends offshore from the 30–50 m depth contour. Bottom layer temperature‐time series constructed from historical records links the Laptev Sea outer shelf to the AW boundary current transporting warm and saline water from the North Atlantic. The AW warming of the mid‐1990s and the mid‐2000s is consistent with outer shelf bottom temperature variability. For April–May 2008 we observed on‐shelf near‐bottom warm and saline water intrusions up to the 20 m isobath. These intrusions are typically about 0.2°C warmer and 1–1.5 practical salinity units saltier than ambient water. The 2002–2009 cross‐slope observations are suggestive for the continental slope upward heat flux from the AW to the overlying low‐halocline water (LHW). The lateral on‐shelf wind‐driven transport of the LHW then results in the bottom layer thermohaline anomalies recorded over the Laptev Sea shelf. We also found that polynya‐induced vertical mixing may act as a drainage of the bottom layer, permitting a relatively small portion of the AW heat to be directly released to the atmosphere. Finally, we see no significant warming (up until now) over the Laptev Sea shelf deeper than 10–15 m in the historical record. Future climate change, however, may bring more intrusions of Atlantic‐modified waters with potentially warmer temperature onto the shelf, which could have a critical impact on the stability of offshore submarine permafrost.
Resumo:
In spite of trying to understand processes in the same spatial domain, the catchment hydrology and water quality scientific communities are relatively disconnected and so are their respective models. This is emphasized by an inadequate representation of transport processes, in both catchment-scale hydrological and water quality models. While many hydrological models at the catchment scale only account for pressure propagation and not for mass transfer, catchment scale water quality models are typically limited by overly simplistic representations of flow processes. With the objective of raising awareness for this issue and outlining potential ways forward we provide a non-technical overview of (1) the importance of hydrology-controlled transport through catchment systems as the link between hydrology and water quality; (2) the limitations of current generation catchment-scale hydrological and water quality models; (3) the concept of transit times as tools to quantify transport and (4) the benefits of transit time based formulations of solute transport for catchment-scale hydrological and water quality models. There is emerging evidence that an explicit formulation of transport processes, based on the concept of transit times has the potential to improve the understanding of the integrated system dynamics of catchments and to provide a stronger link between catchment-scale hydrological and water quality models.
Resumo:
Deuterium (dD) and oxygen (d18O) isotopes are powerful tracers of the hydrological cycle and have been extensively used for paleoclimate reconstructions as they can provide information on past precipitation, temperature and atmospheric circulation. More recently, the use of 17Oexcess derived from precise measurement of d17O and d18O gives new and additional insights in tracing the hydrological cycle whereas uncertainties surround this proxy. However, 17Oexcess could provide additional information on the atmospheric conditions at the moisture source as well as about fractionations associated with transport and site processes. In this paper we trace water stable isotopes (dD, d17O and d18O) along their path from precipitation to cave drip water and finally to speleothem fluid inclusions for Milandre cave in northwestern Switzerland. A two year-long daily resolved precipitation isotope record close to the cave site is compared to collected cave drip water (3 months average resolution) and fluid inclusions of modern and Holocene stalagmites. Amount weighted mean dD, d18O and d17O are �71.0‰, �9.9‰, �5.2‰ for precipitation, �60.3‰, �8.7‰, �4.6‰ for cave drip water and �61.3‰, �8.3‰, �4.7‰ for recent fluid inclusions respectively. Second order parameters have also been derived in precipitation and drip water and present similar values with 18 per meg for 17Oexcess whereas d-excess is 1.5‰ more negative in drip water. Furthermore, the atmospheric signal is shifted towards enriched values in the drip water and fluid inclusions (D of ~ þ 10‰ for dD). The isotopic composition of cave drip water exhibits a weak seasonal signal which is shifted by around 8e10 months (groundwater residence time) when compared to the precipitation. Moreover, we carried out the first d17O measurement in speleothem fluid inclusions, as well as the first comparison of the d17O behaviour from the meteoric water to the fluid inclusions entrapment in speleothems. This study on precipitation, drip water and fluid inclusions will be used as a speleothem proxy calibration for Milandre cave in order to reconstruct paleotemperatures and moisture source variations for Western Central Europe.