39 resultados para 230113 Dynamical Systems
Resumo:
Recent numerical experiments have demonstrated that the state of the stratosphere has a dynamical impact on the state of the troposphere. To account for such an effect, a number of mechanisms have been proposed in the literature, all of which amount to a large-scale adjustment of the troposphere to potential vorticity (PV) anomalies in the stratosphere. This paper analyses whether a simple PV adjustment suffices to explain the actual dynamical response of the troposphere to the state of the stratosphere, the actual response being determined by ensembles of numerical experiments run with an atmospheric general-circulation model. For this purpose, a new PV inverter is developed. It is shown that the simple PV adjustment hypothesis is inadequate. PV anomalies in the stratosphere induce, by inversion, flow anomalies in the troposphere that do not coincide spatially with the tropospheric changes determined by the numerical experiments. Moreover, the tropospheric anomalies induced by PV inversion are on a larger scale than the changes found in the numerical experiments, which are linked to the Atlantic and Pacific storm-tracks. These findings imply that the impact of the stratospheric state on the troposphere is manifested through the impact on individual synoptic-scale systems and their self-organization in the storm-tracks. Changes in these weather systems in the troposphere are not merely synoptic-scale noise on a larger scale tropospheric response, but an integral part of the mechanism by which the state of the stratosphere impacts that of the troposphere.
Resumo:
The problem of state estimation occurs in many applications of fluid flow. For example, to produce a reliable weather forecast it is essential to find the best possible estimate of the true state of the atmosphere. To find this best estimate a nonlinear least squares problem has to be solved subject to dynamical system constraints. Usually this is solved iteratively by an approximate Gauss–Newton method where the underlying discrete linear system is in general unstable. In this paper we propose a new method for deriving low order approximations to the problem based on a recently developed model reduction method for unstable systems. To illustrate the theoretical results, numerical experiments are performed using a two-dimensional Eady model – a simple model of baroclinic instability, which is the dominant mechanism for the growth of storms at mid-latitudes. It is a suitable test model to show the benefit that may be obtained by using model reduction techniques to approximate unstable systems within the state estimation problem.
Resumo:
A recently proposed mean-field theory of mammalian cortex rhythmogenesis describes the salient features of electrical activity in the cerebral macrocolumn, with the use of inhibitory and excitatory neuronal populations (Liley et al 2002). This model is capable of producing a range of important human EEG (electroencephalogram) features such as the alpha rhythm, the 40 Hz activity thought to be associated with conscious awareness (Bojak & Liley 2007) and the changes in EEG spectral power associated with general anesthetic effect (Bojak & Liley 2005). From the point of view of nonlinear dynamics, the model entails a vast parameter space within which multistability, pseudoperiodic regimes, various routes to chaos, fat fractals and rich bifurcation scenarios occur for physiologically relevant parameter values (van Veen & Liley 2006). The origin and the character of this complex behaviour, and its relevance for EEG activity will be illustrated. The existence of short-lived unstable brain states will also be discussed in terms of the available theoretical and experimental results. A perspective on future analysis will conclude the presentation.
Resumo:
Rhythms are manifested ubiquitously in dynamical biological processes. These fundamental processes which are necessary for the survival of living organisms include metabolism, breathing, heart beat, and, above all, the circadian rhythm coupled to the diurnal cycle. Thus, in mathematical biology, biological processes are often represented as linear or nonlinear oscillators. In the framework of nonlinear and dissipative systems (ie. the flow of energy, substances, or sensory information), they generate stable internal oscillations as a response to environmental input and, in turn, utilise such output as a means of coupling with the environment.
Resumo:
The first multi-model study to estimate the predictability of a boreal Sudden Stratospheric Warming (SSW) is performed using five NWP systems. During the 2012-2013 boreal winter, anomalous upward propagating planetary wave activity was observed towards the end of December, which followed by a rapid deceleration of the westerly circulation around 2 January 2013, and on 7 January 2013 the zonal mean zonal wind at 60°N and 10 hPa reversed to easterly. This stratospheric dynamical activity was followed by an equatorward shift of the tropospheric jet stream and by a high pressure anomaly over the North Atlantic, which resulted in severe cold conditions in the UK and Northern Europe. In most of the five models, the SSW event was predicted 10 days in advance. However, only some ensemble members in most of the models predicted weakening of westerly wind when the models were initialized 15 days in advance of the SSW. Further dynamical analysis of the SSW shows that this event was characterized by the anomalous planetary wave-1 amplification followed by the anomalous wave-2 amplification in the stratosphere, which resulted in a split vortex occurring between 6 January 2013 and 8 January 2013. The models have some success in reproducing wave-1 activity when initialized 15 days in advance, they but generally failed to produce the wave-2 activity during the final days of the event. Detailed analysis shows that models have reasonably good skill in forecasting tropospheric blocking features that stimulate wave-2 amplification in the troposphere, but they have limited skill in reproducing wave-2 amplification in the stratosphere.
Resumo:
Trust and reputation are important factors that influence the success of both traditional transactions in physical social networks and modern e-commerce in virtual Internet environments. It is difficult to define the concept of trust and quantify it because trust has both subjective and objective characteristics at the same time. A well-reported issue with reputation management system in business-to-consumer (BtoC) e-commerce is the “all good reputation” problem. In order to deal with the confusion, a new computational model of reputation is proposed in this paper. The ratings of each customer are set as basic trust score events. In addition, the time series of massive ratings are aggregated to formulate the sellers’ local temporal trust scores by Beta distribution. A logical model of trust and reputation is established based on the analysis of the dynamical relationship between trust and reputation. As for single goods with repeat transactions, an iterative mathematical model of trust and reputation is established with a closed-loop feedback mechanism. Numerical experiments on repeated transactions recorded over a period of 24 months are performed. The experimental results show that the proposed method plays guiding roles for both theoretical research into trust and reputation and the practical design of reputation systems in BtoC e-commerce.