125 resultados para 16S-rDNA


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two Gram-negative, anaerobic, non-spore-forming, rod-shaped organisms were isolated from a swine-manure storage pit. Based on morphological and biochemical criteria, the strains were tentatively identified as belonging to the genus Bacteroides but they did not appear to correspond to any recognized species of the genus. Comparative 16S rRNA gene sequencing studies showed that the strains were related closely to each other and confirmed their placement in the genus Bacteroides, but sequence divergence values of > 10% from reference Bacteroides species demonstrated that the organisms from manure represent a novel species. Based on biochemical criteria and molecular genetic evidence, it is proposed that the unknown isolates from manure be assigned to a novel species of the genus Bacteroides, as Bacteroides coprosuis sp. nov. The type strain is PC139(T) (=CCUG 50528(T)=NRRL B-41113(T)).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nineteen strains of Gram-positive, non-motile, non-spore-forming, catalase-positive, rod-shaped bacteria isolated from pigs were characterized by using biochemical, molecular chemical and molecular genetic methods. Two distinct groups of organisms were discerned, based on their colonial morphology, CAMP (Christie-Atkins-Munch-Petersen) reaction and numerical profile by using the API Coryne system. The first group (113 strains) gave a doubtful discrimination between Corynebacterium striatum and Corynebacterium amycolatum, whilst the second group (six strains) were identified tentatively as Corynebacterium urealyticum. Comparative 16S rRNA gene sequencing studies demonstrated that all of the isolates belonged phylogenetically to the genus Corynebacterium. The first group of organisms was highly similar to Corynebacterium testudinoris with respect to 16S rRNA gene sequences and physiological characteristics, whereas the remaining six isolates formed a hitherto unknown subline within the genus, associated with a small subcluster of species that included Corynebacterium auriscanis and its close relatives. The unknown Corynebacterium sp. was distinguished readily from these and other species of the genus by biochemical tests. Based on both phenotypic and phylogenetic evidence, it is proposed that the new isolates from pigs should be classified as a novel species, Corynebacterium suicordis sp. nov. The type strain is P81/02(T) (=CECT 5724(T) =CCUG 46963(T)).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Five strains of an unusual Gram-negative, catalase-positive, oxidase-positive, coccobacillus-shaped bacterium isolated from the lungs and heart of pigs with pneumonia and pericarditis were characterized by phenotypic and molecular genetic methods. On the basis of cellular morphology and biochemical criteria, the isolates were tentatively assigned to the family Neisseriaceae, although they did not appear to correspond to any recognized genus or species. Comparative 16S rRNA gene sequencing showed that the five unidentified strains were phylogenetically highly related to each other and represent a hitherto unknown subline within the family Neisseriaceae. On the basis of both phenotypic and phylogenetic evidence, it is proposed that the unknown isolates from pigs be classified as a novel genus and species within the family Neisseriaceae, for which the name Uruburuella suis gen. nov., sp. nov. is proposed. The type strain of U. suis is 1258/02(T) (=CCUG 47806(T) =CECT 5685(T)).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Unusual Gram-negative, catalase- and oxidase-positive, coccus-shaped bacteria isolated from the lungs of two lambs were characterized by phenotypic and molecular-genetic methods. Comparative 16S rRNA gene sequencing studies demonstrated that the unknown isolates were genealogically highly related to each other (99.8% sequence similarity) and represent a novel subline within the genus Psychrobacter. The unknown bacterium was phylogenetically closely related to, but distinct from, Psychrobacter phenylpyruvicus, Psychrobacter immobilis, Psychrobacter glacincola and Psychrobacter urativorans. The novel Psychrobacter isolates were readily distinguished from all other Psychrobacter species and other Gram-negative, oxidase-positive bacteria usually responsible for lung infections in sheep by physiological and biochemical tests. Based on molecular-genetic and phenotypic evidence, it is proposed that the unknown Psychrobacter isolates from lambs be classified as Psychrobacterpulmonis sp. nov. The type strain is strain S-606(T) (= CECT 5989(T) = CCUG 46240(T)).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Prebiotics are nondigestible food ingredients that encourage proliferation of selected groups of the colonic microflora, thereby altering the composition toward a more beneficial community. In the present study, the prebiotic potential of a novel galactooligosaccharide (GOS) mixture, produced by the activity of galactosyltransferases from Bifidobacterium bifidum 41171 on lactose, was assessed in vitro and in a parallel continuous randomized pig trial. In situ fluorescent hybridization with 16S rRNA-targeted probes was used to investigate changes in total bacteria, bifidobacteria, lactobacilli, bacteroides, and Clostridium histolyticum group in response to supplementing the novel GOS mixture. In a 3-stage continuous culture system, the bifidobacterial numbers for the first 2 vessels, which represented the proximal and traverse colon, increased (P < 0.05) after the addition of the oligosaccharide mixture. In addition, the oligosaccharide mixture strongly inhibited the attachment of enterohepatic Escherichia coli (P < 0.01) and Salmonella enterica serotype Typhimurium (P < 0.01) to HT29 cells. Addition of the novel mixture at 4% (wt:wt) to a commercial diet increased the density of bificlobacteria (P < 0.001) and the acetate concentration (P < 0.001), and decreased the pH (P < 0.001) compared with the control diet and the control diet supplemented with inulin, suggesting a great prebiotic potential for the novel oligosaccharide mixture. J. Nutr. 135: 1726-1731, 2005.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aim: The aim of this study was to measure the gastrointestinal survival of Lactobacillus casei and its impact on the gut microflora in healthy human volunteers. Methods and Results: Twenty healthy volunteers took part in a double-blind placebo-controlled probiotic feeding study (10 fed probiotic, 10 fed placebo). The probiotic was delivered in two 65 ml aliquots of fermented milk drink (FMD) daily for 21 days at a dose of 8.6 +/- 0.1 Log(10)Lact. casei CFU ml(-1) FMD. Faecal samples were collected before, during and after FMD or placebo consumption, and important groups of faecal bacteria enumerated by fluorescent in situ hybridization (FISH) using oligonucleotide probes targeting the 16S rRNA. The fed Lact. casei was enumerated using selective nutrient agar and colony identity confirmed by pulsed field gel electrophoresis. Seven days after ingestion of FMD, the Lact. casei was recovered from faecal samples taken from the active treatment group at 7.1 +/- 0.4 Log(10) CFU g(-1) faeces (mean +/- SD, n = 9) and numbers were maintained at this level until day 21. Lact. casei persisted in six volunteers until day 28 at 5.0 +/- 0.9 Log(10) CFU g(-1) faeces (mean +/- SD, n = 6). Numbers of faecal lactobacilli increased significantly upon FMD ingestion. In addition, the numbers of bifidobacteria were higher on days 7 and 21 than on days 0 and 28 in both FMD fed and placebo fed groups. Consumption of Lact. casei had little discernible effect on other bacterial groups enumerated. Conclusions: Daily consumption of FMD enabled a probiotic Lact. casei strain to be maintained in the gastrointestinal tract of volunteers at a stable relatively high population level during the probiotic feeding period. Significance and Impact of the Study: The study has confirmed that this probiotic version of Lact. casei survives well within the human gastrointestinal tract.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The human gut microbiota comprises a diverse microbial consortium closely co-evolved with the human genome and diet. The importance of the gut microbiota in regulating human health and disease has however been largely overlooked due to the inaccessibility of the intestinal habitat, the complexity of the gut microbiota itself and the fact that many of its members resist cultivation and are in fact new to science. However, with the emergence of 16S rRNA molecular tools and "post-genomics" high resolution technologies for examining microorganisms as they occur in nature without the need for prior laboratory culture, this limited view of the gut microbiota is rapidly changing. This review will discuss the application of molecular microbiological tools to study the human gut microbiota in a culture independent manner. Genomics or metagenomics approaches have a tremendous capability to generate compositional data and to measure the metabolic potential encoded by the combined genomes of the gut microbiota. Another post-genomics approach, metabonomics, has the capacity to measure the metabolic kinetic or flux of metabolites through an ecosystem at a particular point in time or over a time course. Metabonomics thus derives data on the function of the gut microbiota in situ and how it responds to different environmental stimuli e.g. substrates like prebiotics, antibiotics and other drugs and in response to disease. Recently these two culture independent, high resolution approaches have been combined into a single "transgenomic" approach which allows correlation of changes in metabolite profiles within human biofluids with microbiota compositional metagenomic data. Such approaches are providing novel insight into the composition, function and evolution of our gut microbiota.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Myo-inositol hexaphosphate (IP6) or phytic acid is found mostly in cereals and legumes and is thought to possess anti-carcinogenic properties. Aim: To isolate and identify faecal bacteria capable of phytic acid metabolism and to assess the effectiveness of prebiotics (dietary oligosaccharides, metabolised by selective colonic bacteria) in preserving the integrity of phytic acid. Methods: Faecal samples from three volunteers were used in continuous culture experiments under varying conditions of pH, substrate concentration and dilution rates, seventy three different isolates cultured at steady state were then screened for phytic acid metabolism and identified through partial sequencing of their 16S rRNA genes (16S ribosomal ribonucleic acid). Utilisation of phytic acid was also assessed in a continuous culture system enriched with prebiotic fructooligosaccharides (FOS). Results: Bacteroides spp., Clostridium spp. and facultatively anaerobic bacteria generally appeared to maintain viable counts in the presence of phytic acid. Bifidobacterium spp. and Lactobacillus spp. appeared less able to maintain viable counts in the presence of phytic acid. These results were confirmed by an increase in viable counts of Bacteroides spp., Clostridium spp. and a decrease in viable counts of Bifidobacterium spp. and Lactobacillus spp. once phytic acid was introduced to a FOS enriched continuous culture. Conclusions: The phytate metabolising biodiversity from the human large intestine does not appear to encompass major bacterial genera associated with beneficial or benign health effects (e.g. Lactobacillus spp. and Bifidobacterium spp).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Seven obligately anaerobic, gram-positive, rod-shaped, spore-forming organisms isolated from human sources were characterized using phenotypic and molecular taxonomic methods. Comparative 16S rRNA gene sequencing showed that the strains were genetically highly related to each other (displaying >99% sequence similarity) and represent a previously unknown sub-line within the Clostridium coccoides rRNA group of organisms. Strains of the unidentified bacterium used carbohydrate as fermentable substrates, producing acetic acid and lactic acid as the major products of glucose metabolism. The closest described species to the novel bacterium corresponded to Clostridium clostridioforme, although a 16S rRNA sequence divergence of 3% demonstrated they represent different species. Genomic DNA-DNA pairing studies confirmed the separateness of the unknown species and Clostridium clostridioforme. Based on phenotypic and phylogenetic evidence, it is therefore proposed that the unknown bacterium, be classified as Clostridium bolteae sp. nov. The type strain of Clostridium bolteae is WAL 16351(T) (= ATCC(T) = BAA-613(T), CCUG(T) = 46953(T)).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Exopolysaccharides (EPS) isolated from two Bifidobacterium strains, one of human intestinal origin (Bifidobacterium longum subsp. longum IPLA E44) and the other from dairy origin (Bifidobacterium animalis subsp. lactis IPLA R1), were subjected to in vitro chemically simulated gastrointestinal digestion. which showed the absence of degradation of both polymers in these conditions. Polymers were then used as carbon sources in pH-controlled faecal batch cultures and compared with the non-prebiotic carbohydrate glucose and the prebiotic inulin to determine changes in the composition of faecal bacteria. A set of eight fluorescent in situ hybridisation oligonucleotide probes targeting 16S rRNA sequences was used to quantify specific groups of microorganisms. Growth of the opportunistic pathogen Clostridium histolyticum occurred with all carbohydrates tested similarly to that found in negative control cultures without added carbohydrate and was mainly attributed to the culture conditions used rather than enhancement of growth by these substrates. Polymers E44 and RI stimulated growth of Lactobacillus/Enterococcus, Bifidobacterium, and Bacteroides/Prevotella in a similar way to that seen with inulin. The EPS RI also promoted growth of the Atopobium cluster during the first 24 h of fermentation. An increase in acetic and lactic acids was found during early stages of fermentation (first 10-24 h) correlating with increases of Lactobacillus, Bifidobacterium, and Atopobium. Propionic acid concentrations increased in old cultures, which was coincident with the enrichment of Clostridium cluster IX in cultures with EPS RI and with the increases in Bacteroides in cultures with both microbial EPS (RI and E44) and inulin. The lowest acetic to propionic acid ratio was obtained for EPS E44. None of the carbohydrates tested supported the growth of microorganisms from Clostridium clusters XIVa+b and IV, results that correlate with the poor butyrate production in the presence of EPS. Thus, EPS synthesized by bifidobacteria from dairy and intestinal origins can modulate the intestinal microbiota in vitro, promoting changes in some numerically and metabolically relevant microbial populations and shifts in the production of short chain fatty acids. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

During studies on the bacteriology of appendicitis in children, we often isolated from inflamed and non-inflamed tissue samples, an unusual bile-resistant pigment-producing strictly anaerobic gram-negative rod. Phenotypically this organism resembles members of Bacteroides fragilis group of species, as it is resistant to bile and exhibits a special-potency-disk pattern (resistance to vancomycin, kanamycin and colistin) typical for the B. fragilis group. However, the production of brown pigment on media containing haemolysed blood and a cellular fatty acid composition dominated by iso-C15:0, suggests that the organism most closely resembles species of the genus Porphyromonas. However, the unidentified organism differs from porphyromonads by being bile-resistant and by not producing butyrate as a metabolic end-product. Comparative 16S ribosomal RNA gene sequencing studies show the unidentified organism represents a distinct sub-line, associated with but distinct from, the miss-classified species Bacteroides putredinis. The clustering of the unidentified bacterium with Bacteroides putredinis was statistically significant, but they displayed >4% sequence divergence with each other. Chromosomal DNA-DNA pairing studies further confirmed the separateness of the unidentified bacterium and Bacteroides putredinis. Based on phenotypic and phylogenetic considerations, it is proposed that Bacteroides putredinis and the unidentified bacterium from human sources be classified in a new genus Alistipes, as Alistipes putredinis comb. nov. and Alistipes finegoldii sp. nov., respectively. The type strain of Alistipes finegoldii is CCUG 46020(T) (= AHN2437(T)).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It is evident that quantitative information on different microbial groups and their contribution in terms of activity in the gastrointestinal (GI) tract of humans and animals is required in order to formulate functional diets targeting improved gut function and host health. In this work, quantitative information on levels and spatial distributions of Bacteroides spp, Eubacterium spp, Clostridium spp, Escherichia coli, Bifidobacterium spp and Lactobacillus/Enterococcus spp. along the porcine large intestine was investigated using 16S rRNA targeted probes and fluorescent in situ hybridisation (FISH). Caecum, ascending colon (AC) and rectum luminal digesta from three groups of individually housed growing pigs fed either a corn-soybean basal diet (CON diet) or a prebiotic diet containing 10 g/kg oligofructose (FOS diet) or trans-galactooligosaccharides (TOS diet) at the expense of cornstarch were analysed. DAPI staining was used to enumerate total number of cells in the samples. Populations of total cells, Bacteroides, Eubacterium, Clostridium and Bifidobacterium, declined significantly (P < 0.05) from caecum to rectum, and were not affected by dietary treatments. Populations of Lactobacillus/ Enterococcus and E coli did not differ throughout the large intestine. The relative percent (%) contribution of each bacterial group to the total cell count did not differ between caecum and rectum, with the exception of Eubacterium that was higher in the AC digesta. FISH analysis showed that the sum of all bacterial groups made up a small percentage of the total cells, which was 12.4%, 21.8% and 10.3% in caecum, AC and rectum, respectively. This supports the view that in swine, the diversity of GI microflora might be higher compared to other species. In terms of microflora metabolic activity, the substantially higher numerical trends seen in FOS and TOS treatments regarding total volatile fatty acid, acetate concentrations and glycolytic activities, it could be postulated that FOS and TOS promoted saccharolytic activities in the porcine colon. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Intestinal microbial community is involved in the pathogenesis of Crohn's disease, but knowledge of its potential abnormalities has been limited by the impossibility to grow many dominant intestinal bacteria. Using sequence analysis of randomly cloned bacterial 16S ribosomal DNA, the dominant faecal species from four Crolin's disease patients and four controls were compared. Whereas marked inter-individual differences were observed in the faecal microflora of patients, three remained distantly related to controls on the basis of their operational taxonomic unit composition. Bacteroides vidgatus and closely related organisms represented the only molecular species shared by all patients and exhibited an unusually high rate of occurrence. Escherichia coli clones were isolated only in two patients with ileocolonic Crohn's disease. Moreover, numerous clones belonged to phylogenetic groups or species that are commonly not dominant in the faecal microflora of healthy subjects: Pectinatus, Sutterella, Verritcomicrobium, Fusobacterium, Clostridium disporicum, clostridium glycolicum, Clostridium ramosum, Clostridium innocuum and Clostridium perfringens. (C) 2004 Federation of European Microbiological Societies. Published by Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Phenotypic and phylogenetic studies were performed on two isolates of an unidentified Gram-positive, anaerobic, non-spore-forming, rod-shaped bacterium that was isolated from human faeces. The organisms were catalase-negative, produced acetic and butyric acids as end products of metabolism and possessed a DNA G+C content of approximately 54 mol%. Comparative 16S rRNA gene sequencing demonstrated that the two isolates were related closely to each other and formed a hitherto unknown sublineage within the Clostridium leptum rRNA cluster of organisms. Based on phylogenetic and phenotypic evidence, it is proposed that the unknown bacterium should be classified in a novel genus as Anaerotruncus colihominis gen. nov., so. nov. The type strain of Anaerotruncus colihominis is WAL 14565(T) = CCUG 45055(T) = CIP 107754(T).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Morphological, biochemical and molecular genetic studies were carried out on an unknown non-spore-forming, Gram-positive, rod-shaped bacterium that was isolated from dog faeces. The bacterium grew under strictly anaerobic conditions, was asaccharolytic, and possessed a relatively high G + C content of 61 mol%. Phylogenetic analysis based on comparative 16S rRNA gene sequencing showed that the unidentified bacterium was a member of the family Coriobacteriaceae and represents a hitherto unknown subline within the genus Slackia. Based on the presented findings, a novel species, Slackia faecicanis sp. nov., is described. The type strain of Slackia faecicanis is 5WC12(T) (=CCUG 48399(T)=CIP 108281(T)).