65 resultados para 12930-018
Resumo:
A generic model of Exergy Assessment is proposed for the Environmental Impact of the Building Lifecycle, with a special focus on the natural environment. Three environmental impacts: energy consumption, resource consumption and pollutant discharge have been analyzed with reference to energy-embodied exergy, resource chemical exergy and abatement exergy, respectively. The generic model of Exergy Assessment of the Environmental Impact of the Building Lifecycle thus formulated contains two sub-models, one from the aspect of building energy utilization and the other from building materials use. Combined with theories by ecologists such as Odum, the paper evaluates a building's environmental sustainability through its exergy footprint and environmental impacts. A case study from Chongqing, China illustrates the application of this method. From the case study, it was found that energy consumption constitutes 70–80% of the total environmental impact during a 50-year building lifecycle, in which the operation phase accounts for 80% of the total environmental impact, the building material production phase 15% and 5% for the other phases.
Resumo:
Virulence in Staphylococcus aureus is regulated via agr-dependent quorum sensing in which an autoinducing peptide (AIP) activates AgrC, a histidine protein kinase. AIPs are usually thiolactones containing seven to nine amino acid residues in which the thiol of the central cysteine is linked to the alpha-carboxyl of the C-terminal amino acid residue. The staphylococcal agr locus has diverged such that the AIPs of the four different S. aureus agr groups self-activate but cross-inhibit. Consequently, although the agr system is conserved among the staphylococci, it has undergone significant evolutionary divergence whereby to retain functionality, any changes in the AIP-encoding gene (agrD) that modifies AIP structure must be accompanied by corresponding changes in the AgrC receptor. Since AIP-1 and AIP-4 only differ by a single amino acid, we compared the transmembrane topology of AgrC1 and AgrC4 to identify amino acid residues involved in AIP recognition. As only two of the three predicted extracellular loops exhibited amino acid differences, site-specific mutagenesis was used to exchange the key AgrC1 and AgrC4 amino acid residues in each loop either singly or in combination. A novel lux-based agrP3 reporter gene fusion was constructed to evaluate the response of the mutated AgrC receptors. The data obtained revealed that while differential recognition of AIP-1 and AIP-4 depends primarily on three amino acid residues in loop 2, loop 1 is essential for receptor activation by the cognate AIP. Furthermore, a single mutation in the AgrC1 loop 2 resulted in conversion of (Ala5)AIP-1 from a potent antagonist to an activator, essentially resulting in the forced evolution of a new AIP group. Taken together, our data indicate that loop 2 constitutes the predicted hydrophobic pocket that binds the AIP thiolactone ring while the exocyclic amino acid tail interacts with loop 1 to facilitate receptor activation.
Resumo:
This is a study of singular solutions of the problem of traveling gravity water waves on flows with vorticity. We show that, for a certain class of vorticity functions, a sequence of regular waves converges to an extreme wave with stagnation points at its crests. We also show that, for any vorticity function, the profile of an extreme wave must have either a corner of 120° or a horizontal tangent at any stagnation point about which it is supposed symmetric. Moreover, the profile necessarily has a corner of 120° if the vorticity is nonnegative near the free surface.
Resumo:
Objectives: To investigate the impact of apolipoprotein E (apoE) genotype on the response of the plasma lipoprotein profile to eicosapentaenoic acid (EPA) versus docosahexaenoic acid (DHA) intervention in humans. Methods and results: 38 healthy normolipidaemic males, prospectively recruited on the basis of apoE genotype (n = 20 E3/E3 and n = 18 E3/E4), completed a double-blind placebo-controlled cross-over trial, consisting of 3 × 4 week intervention arms of either control oil, EPA-rich oil (ERO, 3.3 g EPA/day) or DHA-rich oil (DRO, 3.7 g DHA/day) in random order, separated by 10 week wash-out periods. A significant genotype-independent 28% and 19% reduction in plasma triglycerides in response to ERO and DRO was observed. For total cholesterol (TC), no significant treatment effects were evident; however a significant genotype by treatment interaction emerged (P = 0.045), with a differential response to ERO and DRO in E4 carriers. Although the genotype × treatment interaction for LDL-cholesterol (P = 0.089) did not reach significance, within DRO treatment analysis indicated a 10% increase in LDL (P = 0.029) in E4 carriers with a non-significant 4% reduction in E3/E3 individuals. A genotype-independent increase in LDL mass was observed following DRO intervention (P = 0.018). Competitive uptake studies in HepG2 cells using plasma very low density lipoproteins (VLDL) from the human trial, indicated that following DRO treatment, VLDL2 fractions obtained from E3/E4 individuals resulted in a significant 32% (P = 0.002) reduction in LDL uptake relative to the control. Conclusions: High dose DHA supplementation is associated with increases in total cholesterol in E4 carriers, which appears to be due to an increase in LDL-C and may in part negate the cardioprotective action of DHA in this population subgroup.
Resumo:
Background: Vagal stimulation in response to nutrients is reported to elicit an array of digestive and endocrine responses, including an alteration in postprandial lipid metabolism. Objective: The objective of this study was to assess whether neural stimulation could alter hormone and substrate metabolism during the late postprandial phase, with implications for body fat mobilization. Design: Vagal stimulation was achieved by using the modified sham feeding (MSF) technique, in which nutrients are chewed and tasted but not swallowed. Ten healthy subjects were studied on 3 separate occasions, 4 wk apart. Five hours after a high-fat breakfast (56 g fat), the subjects were given 1 of 3 test meals allocated in random order: water, a lunch containing a modest amount of fat (38 g), or MSF (38 g fat). Blood was collected for 3 h poststimulus for hormone and metabolite analyses. Results: Plasma insulin and pancreatic polypeptide concentrations peaked at 250% and 209% of baseline concentrations within 15 min of MSF. The plasma glucose concentration increased significantly (P = 0.038) in parallel with the changes observed in the plasma insulin concentration. The nonesterified fatty acid concentration was significantly suppressed (P = 0.006); maximum suppression occurred at a mean time of 114 min after MSF. This fall in nonesterified fatty acid was accompanied by a fall in the plasma glucagon concentration from 122 to 85 pmol/L (P = 0.018) at a mean time of 113 min after MSF. Conclusions: Effects on substrate metabolism after MSF in the postprandial state differ from those usually reported in the postabsorptive state. The effects of MSF were prolonged beyond the period of the cephalic response and these may be relevant for longer-term metabolic regulation.
Resumo:
The effect of High Hydrostatic Pressure (HHP) on the survival of Cronobacter sakazakii was investigated. Deviations from linearity were found on the survival curves and the Mafart equation accurately described the kinetics of inactivation. Comparisons between strains and treatments were made based on the time needed for a 5-log10 reduction in viable count. The ability of C. sakazakii to tolerate high pressure was straindependent with a 26-fold difference in resistance among four strains tested. Pressure resistance was greatest in the stationary growth phase and at the highest growth temperatures tested (30 and 37 °C). Cells treated in neutral pH buffer were 5-fold more resistant than those treated at pH 4.0, and 8-fold more sensitive than those treated in buffer with sucrose added (aw=0.98). Pressure resistance data obtained in buffer at the appropriate pH adequately estimated the resistance of C. sakazakii in chicken and vegetables soups. In contrast, a significant protective effect against high pressure was conferred by rehydrated powdered milk. As expected, treatment efficacy improved as pressure increased. z values of 112, 136 and 156 MPa were obtained for pH 4.0, pH 7.0 and aw=0.98 buffers, respectively. Cells with sublethal injury to their outer and cytoplasmic membranes were detected after HHP under all the conditions tested. The lower resistance of C. sakazakii cells when treated in media of pH 4.0 seemed to be due to a decreased barostability of the bacterial envelopes. Conversely, the higher resistance displayed in media of reduced water activity may relate to a higher stability of bacterial envelopes.
Resumo:
In order to investigate how the population diversity at major Romano-British urban centres compared to small towns and military outposts, we conducted multi-isotope (carbon, nitrogen, oxygen and strontium) analyses of bones (42 individuals) and teeth (26 individuals) of human skeletons from Cataractonium/ Roman Catterick in North Yorkshire (U.K.). The results suggest a markedly less diverse population at Catterick than at the larger towns. Significant differences are observed between burials from the town and fort area and the suburb of Bainesse to the south, and it is suggested that these reflect a shift to more localised recruitment for the Roman army in the Late Roman period. Isotope data for the ‘Bainesse Eunuch’, an unusual 4th century burial that has been interpreted as the remains of a ‘transvestite’ priest of Cybele, are not ultimately conclusive but consistent with origins in Southern Britain or areas with a similar climate abroad. This paper also presents strontium isotope data for modern vegetation samples from 17 sites in the Catterick/northern Vale of York area which contribute to a continuing effort to map the biosphere 87Sr/86Sr variation in Britain.
Resumo:
On 16 UK livestock holdings within pastoral landscapes, we investigated the provision of plant and invertebrate resources for farmland birds in spring barley and winter wheat cereal-based whole crop silages as alternatives to maize and grass silages. The benefits of low input barley systems were also investigated; barley fields were subjected to two separate herbicide sub-treatments on a split-field design (high input broad-spectrum or low input narrow spectrum herbicides). The abundance of plant resources and invertebrates was assessed for three growing seasons during summer and winter for each crop type. The study clearly demonstrated the value of spring barley for the provision of plant resources when compared to the other silage cropping systems, whilst invertebrate responses were variable. No differences in plant and invertebrate resources were found between the barley treatments. Throughout the year, forage maize afforded the lowest provision of resources for farmland birds, and because it is likely that maize will continue to be grown in pastoral areas, the value of this habitat needs to be improved if farmland birds are to benefit. To provide plant and invertebrate resources for farmland birds in pastoral landscapes we strongly advocate the growing of spring sown barley whole-crop silage followed by over-wintering stubbles. © 2011 Elsevier B.V. All rights reserved.
Resumo:
Fermentation properties and prebiotic potential of novel low molecular weight polysaccharides (LMWPs) derived from agar and alginate bearing seaweeds was investigated. Ten LMWPs were supplemented to pH, temperature controlled anaerobic batch cultures inoculated with human feces from three donors, in triplicate. Microbiota changes were monitored using Fluorescent in-situ hybridization and short chain fatty acids, the fermentation end products were analysed using gas chromatography. Of the ten LMWPs tested, Gelidium seaweed CC2253 of molecular weight 64.64 KDa showed a significant increase in bifidobacterial populations from log(10) 8.06 at 0 h to log(10) 8.55 at 24 h (p = 0.018). For total bacterial populations, alginate powder CC2238 produced a significant increase from log(10) 9.01 at 0 h to log(10) 9.58 at 24 h (p = 0.032). No changes were observed in the other bacterial groups tested viz. Bacteroides, Lactobacilli/Enterococci, Eubacterium rectale/Clostridium coccoides and Clostridium histolyticum. The polysaccharides also showed significant increases in total SCFA production, particularly acetic and propionic acids, indicating that they were readily fermented. In conclusion, some LMWPs derived from agar and alginate bearing seaweeds were fermented by gut bacteria and exhibited potential to be used a novel source of prebiotics.
Resumo:
Two-photon excitation enabled for the first time the observation and measurement of excited state fluorescence lifetimes from three flavanols in solution, which were ∼1.0 ns for catechin and epicatechin, but <45 ps for epigallocatechin gallate (EGCG). The shorter lifetime for EGCG is in line with a lower fluorescence quantum yield of 0.003 compared to catechin (0.015) and epicatechin (0.018). In vivo experiments with onion cells demonstrated that tryptophan and quercetin, which tend to be major contributors of background fluorescence in plant cells, have sufficiently low cross sections for two-photon excitation at 630 nm and therefore do not interfere with detection of externally added or endogenous flavanols in Allium cepa or Taxus baccata cells. Applying two-photon excitation to flavanols enabled 3-D fluorescence lifetime imaging microscopy and showed that added EGCG penetrated the whole nucleus of onion cells. Interestingly, EGCG and catechin showed different lifetime behaviour when bound to the nucleus: EGCG lifetime increased from <45 to 200 ps, whilst catechin lifetime decreased from 1.0 ns to 500 ps. Semi-quantitative measurements revealed that the relative ratios of EGCG concentrations in nucleoli associated vesicles: nucleus: cytoplasm were ca. 100:10:1. Solution experiments with catechin, epicatechin and histone proteins provided preliminary evidence, via the appearance of a second lifetime (τ2 = 1.9–3.1 ns), that both flavanols may be interacting with histone proteins. We conclude that there is significant nuclear absorption of flavanols. This advanced imaging using two-photon excitation and biophysical techniques described here will prove valuable for probing the intracellular trafficking and functions of flavanols, such as EGCG, which is the major flavanol of green tea.
Resumo:
The solubility of penciclovir (C10N5O3H17) in a novel film formulation designed for the treatment of cold sores was determined using X-ray, thermal, microscopic and release rate techniques. Solubilities of 0.15–0.23, 0.44, 0.53 and 0.42% (w/w) resulted for each procedure. Linear calibration lines were achieved for experimentally and theoretically determined differential scanning calorimetry (DSC) and X-ray powder diffractometry (XRPD) data. Intra- and inter-batch data precision values were determined; intra values were more precise. Microscopy was additionally useful for examining crystal shape, size distribution and homogeneity of drug distribution within the film. Whereas DSC also determined melting point, XRPD identified polymorphs and release data provided relevant kinetics.
Resumo:
Individual differences in cognitive style can be characterized along two dimensions: ‘systemizing’ (S, the drive to analyze or build ‘rule-based’ systems) and ‘empathizing’ (E, the drive to identify another's mental state and respond to this with an appropriate emotion). Discrepancies between these two dimensions in one direction (S > E) or the other (E > S) are associated with sex differences in cognition: on average more males show an S > E cognitive style, while on average more females show an E > S profile. The neurobiological basis of these different profiles remains unknown. Since individuals may be typical or atypical for their sex, it is important to move away from the study of sex differences and towards the study of differences in cognitive style. Using structural magnetic resonance imaging we examined how neuroanatomy varies as a function of the discrepancy between E and S in 88 adult males from the general population. Selecting just males allows us to study discrepant E-S profiles in a pure way, unconfounded by other factors related to sex and gender. An increasing S > E profile was associated with increased gray matter volume in cingulate and dorsal medial prefrontal areas which have been implicated in processes related to cognitive control, monitoring, error detection, and probabilistic inference. An increasing E > S profile was associated with larger hypothalamic and ventral basal ganglia regions which have been implicated in neuroendocrine control, motivation and reward. These results suggest an underlying neuroanatomical basis linked to the discrepancy between these two important dimensions of individual differences in cognitive style.