917 resultados para Geology|Hydrology
Resumo:
Gridded monthly precipitation data for 1979-2006 from the Global Precipitation Climatology Project are used to investigate interannual summer precipitation variability over Europe and its links to regional atmospheric circulation and evaporation. The first empirical orthogonal function (EOF) mode of European precipitation, explaining 17.2%-22.8% of its total variance, is stable during the summer season and is associated with the North Atlantic Oscillation. The spatialtemporal structure of the second EOF mode is less stable and shows monthtomonth variations during the summer season. This mode is linked to the Scandinavian teleconnection pattern. Analysis of links between leading EOF modes of regional precipitation and evaporation has revealed a significant link between precipitation and evaporation from the European land surface, thus, indicating an important role of the local processes in summertime precipitation variability over Europe. Weaker, but statistically significant links have been found for evaporation from the surface of the Mediterranean and Baltic Seas. Finally, in contrast to winter, no significant links have been revealed between European precipitation and evaporation in the North Atlantic during the summer season.
Resumo:
Analysis of the vertical velocity of ice crystals observed with a 1.5micron Doppler lidar from a continuous sample of stratiform ice clouds over 17 months show that the distribution of Doppler velocity varies strongly with temperature, with mean velocities of 0.2m/s at -40C, increasing to 0.6m/s at -10C due to particle growth and broadening of the size spectrum. We examine the likely influence of crystals smaller than 60microns by forward modelling their effect on the area-weighted fall speed, and comparing the results to the lidar observations. The comparison strongly suggests that the concentration of small crystals in most clouds is much lower than measured in-situ by some cloud droplet probes. We argue that the discrepancy is likely due to shattering of large crystals on the probe inlet, and that numerous small particles should not be included in numerical weather and climate model parameterizations.
Resumo:
A fast radiative transfer model (RTM) to compute emitted infrared radiances for a very high resolution radiometer (VHRR), onboard the operational Indian geostationary satellite Kalpana has been developed and verified. This work is a step towards the assimilation of Kalpana water vapor (WV) radiances into numerical weather prediction models. The fast RTM uses a regression‐based approach to parameterize channel‐specific convolved level to space transmittances. A comparison between the fast RTM and the line‐by‐line RTM demonstrated that the fast RTM can simulate line‐by‐line radiances for the Kalpana WV channel to an accuracy better than the instrument noise, while offering more rapid radiance calculations. A comparison of clear sky radiances of the Kalpana WV channel with the ECMWF model first guess radiances is also presented, aiming to demonstrate the fast RTM performance with the real observations. In order to assimilate the radiances from Kalpana, a simple scheme for bias correction has been suggested.
Resumo:
As part of its Data User Element programme, the European Space Agency funded the GlobMODEL project which aimed at investigating the scientific, technical, and organizational issues associated with the use and exploitation of remotely-sensed observations, particularly from new sounders. A pilot study was performed as a "demonstrator" of the GlobMODEL idea, based on the use of new data, with a strong European heritage, not yet assimilated operationally. Two parallel assimilation experiments were performed, using either total column ozone or ozone profiles retrieved at the Royal Netherlands Meteorological Institute (KNMI) from the Ozone Monitoring Instrument (OMI). In both cases, the impact of assimilating OMI data in addition to the total ozone columns from the SCanning Imaging Absorption spectroMeter for Atmospheric CartograpHY (SCIAMACHY) on the European Centre for Medium Range Weather Forecasts (ECMWF) ozone analyses was assessed by means of independent measurements. We found that the impact of OMI total columns is mainly limited to the region between 20 and 80 hPa, and is particularly important at high latitudes in the Southern hemisphere where the stratospheric ozone transport and chemical depletion are generally difficult to model with accuracy. Furthermore, the assimilation experiments carried out in this work suggest that OMI DOAS (Differential Optical Absorption Spectroscopy) total ozone columns are on average larger than SCIAMACHY total columns by up to 3 DU, while OMI total columns derived from OMI ozone profiles are on average about 8 DU larger than SCIAMACHY total columns. At the same time, the demonstrator brought to light a number of issues related to the assimilation of atmospheric composition profiles, such as the shortcomings arising when the vertical resolution of the instrument is not properly accounted for in the assimilation. The GlobMODEL demonstrator accelerated scientific and operational utilization of new observations and its results - prompted ECMWF to start the operational assimilation of OMI total column ozone data.
Resumo:
This document describes the ERA-Interim Archive at ECMWF. ERA-Interim is a reanalysis of the global atmosphere covering the data-rich period since 1989, and continuing in real time. As ERA-Interim continues forward in time, updates of the Archive will take place on a monthly basis.
Resumo:
Investigation of preferred structures of planetary wave dynamics is addressed using multivariate Gaussian mixture models. The number of components in the mixture is obtained using order statistics of the mixing proportions, hence avoiding previous difficulties related to sample sizes and independence issues. The method is first applied to a few low-order stochastic dynamical systems and data from a general circulation model. The method is next applied to winter daily 500-hPa heights from 1949 to 2003 over the Northern Hemisphere. A spatial clustering algorithm is first applied to the leading two principal components (PCs) and shows significant clustering. The clustering is particularly robust for the first half of the record and less for the second half. The mixture model is then used to identify the clusters. Two highly significant extratropical planetary-scale preferred structures are obtained within the first two to four EOF state space. The first pattern shows a Pacific-North American (PNA) pattern and a negative North Atlantic Oscillation (NAO), and the second pattern is nearly opposite to the first one. It is also observed that some subspaces show multivariate Gaussianity, compatible with linearity, whereas others show multivariate non-Gaussianity. The same analysis is also applied to two subperiods, before and after 1978, and shows a similar regime behavior, with a slight stronger support for the first subperiod. In addition a significant regime shift is also observed between the two periods as well as a change in the shape of the distribution. The patterns associated with the regime shifts reflect essentially a PNA pattern and an NAO pattern consistent with the observed global warming effect on climate and the observed shift in sea surface temperature around the mid-1970s.
Resumo:
A new spectral-based approach is presented to find orthogonal patterns from gridded weather/climate data. The method is based on optimizing the interpolation error variance. The optimally interpolated patterns (OIP) are then given by the eigenvectors of the interpolation error covariance matrix, obtained using the cross-spectral matrix. The formulation of the approach is presented, and the application to low-dimension stochastic toy models and to various reanalyses datasets is performed. In particular, it is found that the lowest-frequency patterns correspond to largest eigenvalues, that is, variances, of the interpolation error matrix. The approach has been applied to the Northern Hemispheric (NH) and tropical sea level pressure (SLP) and to the Indian Ocean sea surface temperature (SST). Two main OIP patterns are found for the NH SLP representing respectively the North Atlantic Oscillation and the North Pacific pattern. The leading tropical SLP OIP represents the Southern Oscillation. For the Indian Ocean SST, the leading OIP pattern shows a tripole-like structure having one sign over the eastern and north- and southwestern parts and an opposite sign in the remaining parts of the basin. The pattern is also found to have a high lagged correlation with the Niño-3 index with 6-months lag.
Resumo:
Whereas the predominance of El Niño Southern Oscillation (ENSO) mode in the tropical Pacific sea surface temperature (SST) variability is well established, no such consensus seems to have been reached by climate scientists regarding the Indian Ocean. While a number of researchers think that the Indian Ocean SST variability is dominated by an active dipolar-type mode of variability, similar to ENSO, others suggest that the variability is mostly passive and behaves like an autocorrelated noise. For example, it is suggested recently that the Indian Ocean SST variability is consistent with the null hypothesis of a homogeneous diffusion process. However, the existence of the basin-wide warming trend represents a deviation from a homogeneous diffusion process, which needs to be considered. An efficient way of detrending, based on differencing, is introduced and applied to the Hadley Centre ice and SST. The filtered SST anomalies over the basin (23.5N-29.5S, 30.5E-119.5E) are then analysed and found to be inconsistent with the null hypothesis on intraseasonal and interannual timescales. The same differencing method is then applied to the smaller tropical Indian Ocean domain. This smaller domain is also inconsistent with the null hypothesis on intraseasonal and interannual timescales. In particular, it is found that the leading mode of variability yields the Indian Ocean dipole, and departs significantly from the null hypothesis only in the autumn season.
Resumo:
The complexity inherent in climate data makes it necessary to introduce more than one statistical tool to the researcher to gain insight into the climate system. Empirical orthogonal function (EOF) analysis is one of the most widely used methods to analyze weather/climate modes of variability and to reduce the dimensionality of the system. Simple structure rotation of EOFs can enhance interpretability of the obtained patterns but cannot provide anything more than temporal uncorrelatedness. In this paper, an alternative rotation method based on independent component analysis (ICA) is considered. The ICA is viewed here as a method of EOF rotation. Starting from an initial EOF solution rather than rotating the loadings toward simplicity, ICA seeks a rotation matrix that maximizes the independence between the components in the time domain. If the underlying climate signals have an independent forcing, one can expect to find loadings with interpretable patterns whose time coefficients have properties that go beyond simple noncorrelation observed in EOFs. The methodology is presented and an application to monthly means sea level pressure (SLP) field is discussed. Among the rotated (to independence) EOFs, the North Atlantic Oscillation (NAO) pattern, an Arctic Oscillation–like pattern, and a Scandinavian-like pattern have been identified. There is the suggestion that the NAO is an intrinsic mode of variability independent of the Pacific.
Resumo:
The entropy budget is calculated of the coupled atmosphere–ocean general circulation model HadCM3. Estimates of the different entropy sources and sinks of the climate system are obtained directly from the diabatic heating terms, and an approximate estimate of the planetary entropy production is also provided. The rate of material entropy production of the climate system is found to be ∼50 mW m−2 K−1, a value intermediate in the range 30–70 mW m−2 K−1 previously reported from different models. The largest part of this is due to sensible and latent heat transport (∼38 mW m−2 K−1). Another 13 mW m−2 K−1 is due to dissipation of kinetic energy in the atmosphere by friction and Reynolds stresses. Numerical entropy production in the atmosphere dynamical core is found to be about 0.7 mW m−2 K−1. The material entropy production within the ocean due to turbulent mixing is ∼1 mW m−2 K−1, a very small contribution to the material entropy production of the climate system. The rate of change of entropy of the model climate system is about 1 mW m−2 K−1 or less, which is comparable with the typical size of the fluctuations of the entropy sources due to interannual variability, and a more accurate closure of the budget than achieved by previous analyses. Results are similar for FAMOUS, which has a lower spatial resolution but similar formulation to HadCM3, while more substantial differences are found with respect to other models, suggesting that the formulation of the model has an important influence on the climate entropy budget. Since this is the first diagnosis of the entropy budget in a climate model of the type and complexity used for projection of twenty-first century climate change, it would be valuable if similar analyses were carried out for other such models.
Resumo:
Severe wind storms are one of the major natural hazards in the extratropics and inflict substantial economic damages and even casualties. Insured storm-related losses depend on (i) the frequency, nature and dynamics of storms, (ii) the vulnerability of the values at risk, (iii) the geographical distribution of these values, and (iv) the particular conditions of the risk transfer. It is thus of great importance to assess the impact of climate change on future storm losses. To this end, the current study employs—to our knowledge for the first time—a coupled approach, using output from high-resolution regional climate model scenarios for the European sector to drive an operational insurance loss model. An ensemble of coupled climate-damage scenarios is used to provide an estimate of the inherent uncertainties. Output of two state-of-the-art global climate models (HadAM3, ECHAM5) is used for present (1961–1990) and future climates (2071–2100, SRES A2 scenario). These serve as boundary data for two nested regional climate models with a sophisticated gust parametrizations (CLM, CHRM). For validation and calibration purposes, an additional simulation is undertaken with the CHRM driven by the ERA40 reanalysis. The operational insurance model (Swiss Re) uses a European-wide damage function, an average vulnerability curve for all risk types, and contains the actual value distribution of a complete European market portfolio. The coupling between climate and damage models is based on daily maxima of 10 m gust winds, and the strategy adopted consists of three main steps: (i) development and application of a pragmatic selection criterion to retrieve significant storm events, (ii) generation of a probabilistic event set using a Monte-Carlo approach in the hazard module of the insurance model, and (iii) calibration of the simulated annual expected losses with a historic loss data base. The climate models considered agree regarding an increase in the intensity of extreme storms in a band across central Europe (stretching from southern UK and northern France to Denmark, northern Germany into eastern Europe). This effect increases with event strength, and rare storms show the largest climate change sensitivity, but are also beset with the largest uncertainties. Wind gusts decrease over northern Scandinavia and Southern Europe. Highest intra-ensemble variability is simulated for Ireland, the UK, the Mediterranean, and parts of Eastern Europe. The resulting changes on European-wide losses over the 110-year period are positive for all layers and all model runs considered and amount to 44% (annual expected loss), 23% (10 years loss), 50% (30 years loss), and 104% (100 years loss). There is a disproportionate increase in losses for rare high-impact events. The changes result from increases in both severity and frequency of wind gusts. Considerable geographical variability of the expected losses exists, with Denmark and Germany experiencing the largest loss increases (116% and 114%, respectively). All countries considered except for Ireland (−22%) experience some loss increases. Some ramifications of these results for the socio-economic sector are discussed, and future avenues for research are highlighted. The technique introduced in this study and its application to realistic market portfolios offer exciting prospects for future research on the impact of climate change that is relevant for policy makers, scientists and economists.
Resumo:
Key climate feedbacks due to water vapor and clouds rest largely on how relative humidity R changes in a warmer climate, yet this has not been extensively analyzed in models. General circulation models (GCMs) from the CMIP3 archive and several higher resolution atmospheric GCMs examined here generally predict a characteristic pattern of R trend with global temperature that has been reported previously in individual models, including increase around the tropopause, decrease in the tropical upper troposphere, and decrease in midlatitudes. This pattern is very similar to that previously reported for cloud cover in the same GCMs, confirming the role of R in controlling changes in simulated cloud. Comparing different models, the trend in each part of the troposphere is approximately proportional to the upward and/or poleward gradient of R in the present climate. While this suggests that the changes simply reflect a shift of the R pattern upward with the tropopause and poleward with the zonal jets, the drying trend in the subtropics is roughly three times too large to be attributable to shifts of subtropical features, and the subtropical R minima deepen in most models. R trends are correlated with horizontal model resolution, especially outside the tropics, where they show signs of convergence and latitudinal gradients become close to available observations for GCM resolutions near T85 and higher. We argue that much of the systematic change in R can be explained by the local specific humidity having been set (by condensation) in remote regions with different temperature changes, hence the gradients and trends each depend on a model’s ability to resolve moisture transport. Finally, subtropical drying trends predicted from the warming alone fall well short of those observed in recent decades. While this discrepancy supports previous reports of GCMs underestimating Hadley Cell expansion, our results imply that shifts alone are not a sufficient interpretation of changes.
Resumo:
Results are presented from a matrix of coupled model integrations, using atmosphere resolutions of 135 and 90 km, and ocean resolutions of 1° and 1/3°, to study the impact of resolution on simulated climate. The mean state of the tropical Pacific is found to be improved in the models with a higher ocean resolution. Such an improved mean state arises from the development of tropical instability waves, which are poorly resolved at low resolution; these waves reduce the equatorial cold tongue bias. The improved ocean state also allows for a better simulation of the atmospheric Walker circulation. Several sensitivity studies have been performed to further understand the processes involved in the different component models. Significantly decreasing the horizontal momentum dissipation in the coupled model with the lower-resolution ocean has benefits for the mean tropical Pacific climate, but decreases model stability. Increasing the momentum dissipation in the coupled model with the higher-resolution ocean degrades the simulation toward that of the lower-resolution ocean. These results suggest that enhanced ocean model resolution can have important benefits for the climatology of both the atmosphere and ocean components of the coupled model, and that some of these benefits may be achievable at lower ocean resolution, if the model formulation allows.
Resumo:
This article describes the development and evaluation of the U.K.’s new High-Resolution Global Environmental Model (HiGEM), which is based on the latest climate configuration of the Met Office Unified Model, known as the Hadley Centre Global Environmental Model, version 1 (HadGEM1). In HiGEM, the horizontal resolution has been increased to 0.83° latitude × 1.25° longitude for the atmosphere, and 1/3° × 1/3° globally for the ocean. Multidecadal integrations of HiGEM, and the lower-resolution HadGEM, are used to explore the impact of resolution on the fidelity of climate simulations. Generally, SST errors are reduced in HiGEM. Cold SST errors associated with the path of the North Atlantic drift improve, and warm SST errors are reduced in upwelling stratocumulus regions where the simulation of low-level cloud is better at higher resolution. The ocean model in HiGEM allows ocean eddies to be partially resolved, which dramatically improves the representation of sea surface height variability. In the Southern Ocean, most of the heat transports in HiGEM is achieved by resolved eddy motions, which replaces the parameterized eddy heat transport in the lower-resolution model. HiGEM is also able to more realistically simulate small-scale features in the wind stress curl around islands and oceanic SST fronts, which may have implications for oceanic upwelling and ocean biology. Higher resolution in both the atmosphere and the ocean allows coupling to occur on small spatial scales. In particular, the small-scale interaction recently seen in satellite imagery between the atmosphere and tropical instability waves in the tropical Pacific Ocean is realistically captured in HiGEM. Tropical instability waves play a role in improving the simulation of the mean state of the tropical Pacific, which has important implications for climate variability. In particular, all aspects of the simulation of ENSO (spatial patterns, the time scales at which ENSO occurs, and global teleconnections) are much improved in HiGEM.
Resumo:
21st century climate change is projected to result in an intensification of the global hydrological cycle, but there is substantial uncertainty in how this will impact freshwater availability. A relatively overlooked aspect of this uncertainty pertains to how different methods of estimating potential evapotranspiration (PET) respond to changing climate. Here we investigate the global response of six different PET methods to a 2 °C rise in global mean temperature. All methods suggest an increase in PET associated with a warming climate. However, differences in PET climate change signal of over 100% are found between methods. Analysis of a precipitation/PET aridity index and regional water surplus indicates that for certain regions and GCMs, choice of PET method can actually determine the direction of projections of future water resources. As such, method dependence of the PET climate change signal is an important source of uncertainty in projections of future freshwater availability.