558 resultados para hillslope hydrology


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We describe a new methodology for comparing satellite radiation budget data with a numerical weather prediction (NWP) model. This is applied to data from the Geostationary Earth Radiation Budget (GERB) instrument on Meteosat-8. The methodology brings together, in near-real time, GERB broadband shortwave and longwave fluxes with simulations based on analyses produced by the Met Office global NWP model. Results for the period May 2003 to February 2005 illustrate the progressive improvements in the data products as various initial problems were resolved. In most areas the comparisons reveal systematic errors in the model's representation of surface properties and clouds, which are discussed elsewhere. However, for clear-sky regions over the oceans the model simulations are believed to be sufficiently accurate to allow the quality of the GERB fluxes themselves to be assessed and any changes in time of the performance of the instrument to be identified. Using model and radiosonde profiles of temperature and humidity as input to a single-column version of the model's radiation code, we conduct sensitivity experiments which provide estimates of the expected model errors over the ocean of about ±5–10 W m−2 in clear-sky outgoing longwave radiation (OLR) and ±0.01 in clear-sky albedo. For the more recent data the differences between the observed and modeled OLR and albedo are well within these error estimates. The close agreement between the observed and modeled values, particularly for the most recent period, illustrates the value of the methodology. It also contributes to the validation of the GERB products and increases confidence in the quality of the data, prior to their release.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The distribution and variability of water vapor and its links with radiative cooling and latent heating via precipitation are crucial to understanding feedbacks and processes operating within the climate system. Column-integrated water vapor (CWV) and additional variables from the European Centre for Medium-Range Weather Forecasts (ECMWF) 40-year reanalysis (ERA40) are utilized to quantify the spatial and temporal variability in tropical water vapor over the period 1979–2001. The moisture variability is partitioned between dynamical and thermodynamic influences and compared with variations in precipitation provided by the Climate Prediction Center Merged Analysis of Precipitation (CMAP) and the Global Precipitation Climatology Project (GPCP). The spatial distribution of CWV is strongly determined by thermodynamic constraints. Spatial variability in CWV is dominated by changes in the large-scale dynamics, in particular associated with the El Niño–Southern Oscillation (ENSO). Trends in CWV are also dominated by dynamics rather than thermodynamics over the period considered. However, increases in CWV associated with changes in temperature are significant over the equatorial east Pacific when analyzing interannual variability and over the north and northwest Pacific when analyzing trends. Significant positive trends in CWV tend to predominate over the oceans while negative trends in CWV are found over equatorial Africa and Brazil. Links between changes in CWV and vertical motion fields are identified over these regions and also the equatorial Atlantic. However, trends in precipitation are generally incoherent and show little association with the CWV trends. This may in part reflect the inadequacies of the precipitation data sets and reanalysis products when analyzing decadal variability. Though the dynamic component of CWV is a major factor in determining precipitation variability in the tropics, in some regions/seasons the thermodynamic component cancels its effect on precipitation variability.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper reports on a new satellite sensor, the Geostationary Earth Radiation Budget (GERB) experiment. GERB is designed to make the first measurements of the Earth's radiation budget from geostationary orbit. Measurements at high absolute accuracy of the reflected sunlight from the Earth, and the thermal radiation emitted by the Earth are made every 15 min, with a spatial resolution at the subsatellite point of 44.6 km (north–south) by 39.3 km (east–west). With knowledge of the incoming solar constant, this gives the primary forcing and response components of the top-of-atmosphere radiation. The first GERB instrument is an instrument of opportunity on Meteosat-8, a new spin-stabilized spacecraft platform also carrying the Spinning Enhanced Visible and Infrared (SEVIRI) sensor, which is currently positioned over the equator at 3.5°W. This overview of the project includes a description of the instrument design and its preflight and in-flight calibration. An evaluation of the instrument performance after its first year in orbit, including comparisons with data from the Clouds and the Earth's Radiant Energy System (CERES) satellite sensors and with output from numerical models, are also presented. After a brief summary of the data processing system and data products, some of the scientific studies that are being undertaken using these early data are described. This marks the beginning of a decade or more of observations from GERB, as subsequent models will fly on each of the four Meteosat Second Generation satellites.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The purpose of Research Theme 4 (RT4) was to advance understanding of the basic science issues at the heart of the ENSEMBLES project, focusing on the key processes that govern climate variability and change, and that determine the predictability of climate. Particular attention was given to understanding linear and non-linear feedbacks that may lead to climate surprises,and to understanding the factors that govern the probability of extreme events. Improved understanding of these issues will contribute significantly to the quantification and reduction of uncertainty in seasonal to decadal predictions and projections of climate change. RT4 exploited the ENSEMBLES integrations (stream 1) performed in RT2A as well as undertaking its own experimentation to explore key processes within the climate system. It was working at the cutting edge of problems related to climate feedbacks, the interaction between climate variability and climate change � especially how climate change pertains to extreme events, and the predictability of the climate system on a range of time-scales. The statisticalmethodologies developed for extreme event analysis are new and state-of-the-art. The RT4-coordinated experiments, which have been conducted with six different atmospheric GCMs forced by common timeinvariant sea surface temperature (SST) and sea-ice fields (removing some sources of inter-model variability), are designed to help to understand model uncertainty (rather than scenario or initial condition uncertainty) in predictions of the response to greenhouse-gas-induced warming. RT4 links strongly with RT5 on the evaluation of the ENSEMBLES prediction system and feeds back its results to RT1 to guide improvements in the Earth system models and, through its research on predictability, to steer the development of methods for initialising the ensembles

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We describe numerical simulations designed to elucidate the role of mean ocean salinity in climate. Using a coupled atmosphere-ocean general circulation model, we study a 100-year sensitivity experiment in which the global-mean salinity is approximately doubled from its present observed value, by adding 35 psu everywhere in the ocean. The salinity increase produces a rapid global-mean sea-surface warming of C within a few years, caused by reduced vertical mixing associated with changes in cabbeling. The warming is followed by a gradual global-mean sea-surface cooling of C within a few decades, caused by an increase in the vertical (downward) component of the isopycnal diffusive heat flux. We find no evidence of impacts on the variability of the thermohaline circulation (THC) or El Niño/Southern Oscillation (ENSO). The mean strength of the Atlantic meridional overturning is reduced by 20% and the North Atlantic Deep Water penetrates less deeply. Nevertheless, our results dispute claims that higher salinities for the world ocean have profound consequences for the thermohaline circulation. In additional experiments with doubled atmospheric carbon dioxide, we find that the amplitude and spatial pattern of the global warming signal are modified in the hypersaline ocean. In particular, the equilibrated global-mean sea-surface temperature increase caused by doubling carbon dioxide is reduced by 10%. We infer the existence of a non-linear interaction between the climate responses to modified carbon dioxide and modified salinity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Robert–Asselin time filter is widely used in numerical models of weather and climate. It successfully suppresses the spurious computational mode associated with the leapfrog time-stepping scheme. Unfortunately, it also weakly suppresses the physical mode and severely degrades the numerical accuracy. These two concomitant problems are shown to occur because the filter does not conserve the mean state, averaged over the three time slices on which it operates. The author proposes a simple modification to the Robert–Asselin filter, which does conserve the three-time-level mean state. When used in conjunction with the leapfrog scheme, the modification vastly reduces the impacts on the physical mode and increases the numerical accuracy for amplitude errors by two orders, yielding third-order accuracy. The modified filter could easily be incorporated into existing general circulation models of the atmosphere and ocean. In principle, it should deliver more faithful simulations at almost no additional computational expense. Alternatively, it may permit the use of longer time steps with no loss of accuracy, reducing the computational expense of a given simulation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The possibility of future rapid climatic changes is a pressing concern amongst climate scientists. For example, an abrupt collapse of the ocean's Thermohaline Circulation (THC) would rapidly cool the northern hemisphere and reduce the net global primary productivity of vegetation, according to computer models. It is unclear how to incorporate such low-probability, high-impact events into the development of economics policies. This paper reviews the salient aspects of rapid climate change relevant to economists and policy makers. The main scientific certainties and uncertainties are clearly delineated, with the aim of guiding economics goals and ensuring that they retain fidelity to their scientific underpinnings.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Under global warming, the predicted intensification of the global freshwater cycle will modify the net freshwater flux at the ocean surface. Since the freshwater flux maintains ocean salinity structures, changes to the density-driven ocean circulation are likely. A modified ocean circulation could further alter the climate, potentially allowing rapid changes, as seen in the past. The relevant feedback mechanisms and timescales are poorly understood in detail, however, especially at low latitudes where the effects of salinity are relatively subtle. In an attempt to resolve some of these outstanding issues, we present an investigation of the climate response of the low-latitude Pacific region to changes in freshwater forcing. Initiated from the present-day thermohaline structure, a control run of a coupled ocean-atmosphere general circulation model is compared with a perturbation run in which the net freshwater flux is prescribed to be zero over the ocean. Such an extreme experiment helps to elucidate the general adjustment mechanisms and their timescales. The atmospheric greenhouse gas concentrations are held constant, and we restrict our attention to the adjustment of the upper 1,000 m of the Pacific Ocean between 40°N and 40°S, over 100 years. In the perturbation run, changes to the surface buoyancy, near-surface vertical mixing and mixed-layer depth are established within 1 year. Subsequently, relative to the control run, the surface of the low-latitude Pacific Ocean in the perturbation run warms by an average of 0.6°C, and the interior cools by up to 1.1°C, after a few decades. This vertical re-arrangement of the ocean heat content is shown to be achieved by a gradual shutdown of the heat flux due to isopycnal (i.e. along surfaces of constant density) mixing, the vertical component of which is downwards at low latitudes. This heat transfer depends crucially upon the existence of density-compensating temperature and salinity gradients on isopycnal surfaces. The timescale of the thermal changes in the perturbation run is therefore set by the timescale for the decay of isopycnal salinity gradients in response to the eliminated freshwater forcing, which we demonstrate to be around 10-20 years. Such isopycnal heat flux changes may play a role in the response of the low-latitude climate to a future accelerated freshwater cycle. Specifically, the mechanism appears to represent a weak negative sea surface temperature feedback, which we speculate might partially shield from view the anthropogenically-forced global warming signal at low latitudes. Furthermore, since the surface freshwater flux is shown to play a role in determining the ocean's thermal structure, it follows that evaporation and/or precipitation biases in general circulation models are likely to cause sea surface temperature biases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Our understanding of the climate system has been revolutionized recently, by the development of sophisticated computer models. The predictions of such models are used to formulate international protocols, intended to mitigate the severity of global warming and its impacts. Yet, these models are not perfect representations of reality, because they remove from explicit consideration many physical processes which are known to be key aspects of the climate system, but which are too small or fast to be modelled. The purpose of this paper is to give a personal perspective of the current state of knowledge regarding the problem of unresolved scales in climate models. A recent novel solution to the problem is discussed, in which it is proposed, somewhat counter-intuitively, that the performance of models may be improved by adding random noise to represent the unresolved processes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The banded patterns of cloud and wind are among the most striking features of the atmospheres of Jupiter and Saturn, but their dynamical origin remains poorly understood. Most approaches towards understanding zonation so far (also in the terrestrial oceans) have used highly idealized models to show that it might originate from dynamical anisotropy in a shallow turbulent fluid layer due to the planetary β-effect. Here we report the results of laboratory experiments, conducted on a 14-m diameter turntable, which quantitatively confirm that multiple zonal jets may indeed be generated and maintained by this mechanism in the presence of deep convection and a topographic β-effect. At the very small values of Ekman number (≤2 × 10−5) and large local Reynolds numbers (≥2000, based on jet scales) achieved, the kinetic energy spectra suggest the presence of both energy-cascading and enstrophy-cascading inertial ranges in addition to the zonation near twice the Rhines wave number.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Inertia-gravity waves exist ubiquitously throughout the stratified parts of the atmosphere and ocean. They are generated by local velocity shears, interactions with topography, and as geostrophic (or spontaneous) adjustment radiation. Relatively little is known about the details of their interaction with the large-scale flow, however. We report on a joint model/laboratory study of a flow in which inertia-gravity waves are generated as spontaneous adjustment radiation by an evolving large-scale mode. We show that their subsequent impact upon the large-scale dynamics is generally small. However, near a potential transition from one large-scale mode to another, in a flow which is simultaneously baroclinically-unstable to more than one mode, the inertia-gravity waves may strongly influence the selection of the mode which actually occurs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Numerical studies of surface ocean fronts forced by inhomogeneous buoyancy loss show nonhydrostatic convective plumes coexisting with baroclinic eddies. The character of the vertical overturning depends sensitively on the treatment of the vertical momentum equation in the model. It is less well known how the frontal evolution over scales of O(10 km) is affected by these dynamics. Here, we compare highly resolved numerical experiments using nonhydrostatic and hydrostatic models and the convective-adjustment parametrization. The impact of nonhydrostatic processes on average cross-frontal transfer is weak compared to the effect of the O(1 km) scale baroclinic motions. For water-mass distribution and formation rate nonhydrostatic dynamics have similar influence to the baroclinic eddies although adequate resolution of the gradients in forcing fluxes is more important. The overall implication is that including nonhydrostatic surface frontal dynamics in ocean general circulation models will have only a minor effect on scales of O(1 km) and greater.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report on a numerical study of the impact of short, fast inertia-gravity waves on the large-scale, slowly-evolving flow with which they co-exist. A nonlinear quasi-geostrophic numerical model of a stratified shear flow is used to simulate, at reasonably high resolution, the evolution of a large-scale mode which grows due to baroclinic instability and equilibrates at finite amplitude. Ageostrophic inertia-gravity modes are filtered out of the model by construction, but their effects on the balanced flow are incorporated using a simple stochastic parameterization of the potential vorticity anomalies which they induce. The model simulates a rotating, two-layer annulus laboratory experiment, in which we recently observed systematic inertia-gravity wave generation by an evolving, large-scale flow. We find that the impact of the small-amplitude stochastic contribution to the potential vorticity tendency, on the model balanced flow, is generally small, as expected. In certain circumstances, however, the parameterized fast waves can exert a dominant influence. In a flow which is baroclinically-unstable to a range of zonal wavenumbers, and in which there is a close match between the growth rates of the multiple modes, the stochastic waves can strongly affect wavenumber selection. This is illustrated by a flow in which the parameterized fast modes dramatically re-partition the probability-density function for equilibrated large-scale zonal wavenumber. In a second case study, the stochastic perturbations are shown to force spontaneous wavenumber transitions in the large-scale flow, which do not occur in their absence. These phenomena are due to a stochastic resonance effect. They add to the evidence that deterministic parameterizations in general circulation models, of subgrid-scale processes such as gravity wave drag, cannot always adequately capture the full details of the nonlinear interaction.