397 resultados para Mesoscale modelling
Resumo:
This paper aims to develop a mathematical model based on semi-group theory, which allows to improve quality of service (QoS), including the reduction of the carbon path, in a pervasive environment of a Mobile Virtual Network Operator (MVNO). This paper generalise an interrelationship Machine to Machine (M2M) mathematical model, based on semi-group theory. This paper demonstrates that using available technology and with a solid mathematical model, is possible to streamline relationships between building agents, to control pervasive spaces so as to reduce the impact in carbon footprint through the reduction of GHG.
Resumo:
This paper introduces an architecture for identifying and modelling in real-time at a copper mine using new technologies as M2M and cloud computing with a server in the cloud and an Android client inside the mine. The proposed design brings up pervasive mining, a system with wider coverage, higher communication efficiency, better fault-tolerance, and anytime anywhere availability. This solution was designed for a plant inside the mine which cannot tolerate interruption and for which their identification in situ, in real time, is an essential part of the system to control aspects such as instability by adjusting their corresponding parameters without stopping the process.
Resumo:
Atmospheric CO2 concentration is hypothesized to influence vegetation distribution via tree–grass competition, with higher CO2 concentrations favouring trees. The stable carbon isotope (δ13C) signature of vegetation is influenced by the relative importance of C4 plants (including most tropical grasses) and C3 plants (including nearly all trees), and the degree of stomatal closure – a response to aridity – in C3 plants. Compound-specific δ13C analyses of leaf-wax biomarkers in sediment cores of an offshore South Atlantic transect are used here as a record of vegetation changes in subequatorial Africa. These data suggest a large increase in C3 relative to C4 plant dominance after the Last Glacial Maximum. Using a process-based biogeography model that explicitly simulates 13C discrimination, it is shown that precipitation and temperature changes cannot explain the observed shift in δ13C values. The physiological effect of increasing CO2 concentration is decisive, altering the C3/C4 balance and bringing the simulated and observed δ13C values into line. It is concluded that CO2 concentration itself was a key agent of vegetation change in tropical southern Africa during the last glacial–interglacial transition. Two additional inferences follow. First, long-term variations in terrestrial δ13Cvalues are not simply a proxy for regional rainfall, as has sometimes been assumed. Although precipitation and temperature changes have had major effects on vegetation in many regions of the world during the period between the Last Glacial Maximum and recent times, CO2 effects must also be taken into account, especially when reconstructing changes in climate between glacial and interglacial states. Second, rising CO2 concentration today is likely to be influencing tree–grass competition in a similar way, and thus contributing to the "woody thickening" observed in savannas worldwide. This second inference points to the importance of experiments to determine how vegetation composition in savannas is likely to be influenced by the continuing rise of CO2 concentration.
Resumo:
In order to evaluate the future potential benefits of emission regulation on regional air quality, while taking into account the effects of climate change, off-line air quality projection simulations are driven using weather forcing taken from regional climate models. These regional models are themselves driven by simulations carried out using global climate models (GCM) and economical scenarios. Uncertainties and biases in climate models introduce an additional “climate modeling” source of uncertainty that is to be added to all other types of uncertainties in air quality modeling for policy evaluation. In this article we evaluate the changes in air quality-related weather variables induced by replacing reanalyses-forced by GCM-forced regional climate simulations. As an example we use GCM simulations carried out in the framework of the ERA-interim programme and of the CMIP5 project using the Institut Pierre-Simon Laplace climate model (IPSLcm), driving regional simulations performed in the framework of the EURO-CORDEX programme. In summer, we found compensating deficiencies acting on photochemistry: an overestimation by GCM-driven weather due to a positive bias in short-wave radiation, a negative bias in wind speed, too many stagnant episodes, and a negative temperature bias. In winter, air quality is mostly driven by dispersion, and we could not identify significant differences in either wind or planetary boundary layer height statistics between GCM-driven and reanalyses-driven regional simulations. However, precipitation appears largely overestimated in GCM-driven simulations, which could significantly affect the simulation of aerosol concentrations. The identification of these biases will help interpreting results of future air quality simulations using these data. Despite these, we conclude that the identified differences should not lead to major difficulties in using GCM-driven regional climate simulations for air quality projections.
Resumo:
Relating the measurable, large scale, effects of anaesthetic agents to their molecular and cellular targets of action is necessary to better understand the principles by which they affect behavior, as well as enabling the design and evaluation of more effective agents and the better clinical monitoring of existing and future drugs. Volatile and intravenous general anaesthetic agents (GAs) are now known to exert their effects on a variety of protein targets, the most important of which seem to be the neuronal ion channels. It is hence unlikely that anaesthetic effect is the result of a unitary mechanism at the single cell level. However, by altering the behavior of ion channels GAs are believed to change the overall dynamics of distributed networks of neurons. This disruption of regular network activity can be hypothesized to cause the hypnotic and analgesic effects of GAs and may well present more stereotypical characteristics than its underlying microscopic causes. Nevertheless, there have been surprisingly few theories that have attempted to integrate, in a quantitative manner, the empirically well documented alterations in neuronal ion channel behavior with the corresponding macroscopic effects. Here we outline one such approach, and show that a range of well documented effects of anaesthetics on the electroencephalogram (EEG) may be putatively accounted for. In particular we parameterize, on the basis of detailed empirical data, the effects of halogenated volatile ethers (a clinically widely used class of general anaesthetic agent). The resulting model is able to provisionally account for a range of anaesthetically induced EEG phenomena that include EEG slowing, biphasic changes in EEG power, and the dose dependent appearance of anomalous ictal activity, as well as providing a basis for novel approaches to monitoring brain function in both health and disease.
Resumo:
A mesoscale meteorological model (FOOT3DK) is coupled with a gas exchange model to simulate surface fluxes of CO2 and H2O under field conditions. The gas exchange model consists of a C3 single leaf photosynthesis sub-model and an extended big leaf (sun/shade) sub-model that divides the canopy into sunlit and shaded fractions. Simulated CO2 fluxes of the stand-alone version of the gas exchange model correspond well to eddy-covariance measurements at a test site in a rural area in the west of Germany. The coupled FOOT3DK/gas exchange model is validated for the diurnal cycle at singular grid points, and delivers realistic fluxes with respect to their order of magnitude and to the general daily course. Compared to the Jarvis-based big leaf scheme, simulations of latent heat fluxes with a photosynthesis-based scheme for stomatal conductance are more realistic. As expected, flux averages are strongly influenced by the underlying land cover. While the simulated net ecosystem exchange is highly correlated with leaf area index, this correlation is much weaker for the latent heat flux. Photosynthetic CO2 uptake is associated with transpirational water loss via the stomata, and the resulting opposing surface fluxes of CO2 and H2O are reproduced with the model approach. Over vegetated surfaces it is shown that the coupling of a photosynthesis-based gas exchange model with the land-surface scheme of a mesoscale model results in more realistic simulated latent heat fluxes.
Resumo:
The impact of projected climate change on wine production was analysed for the Demarcated Region of Douro, Portugal. A statistical grapevine yield model (GYM) was developed using climate parameters as predictors. Statistically significant correlations were identified between annual yield and monthly mean temperatures and monthly precipitation totals during the growing cycle. These atmospheric factors control grapevine yield in the region, with the GYM explaining 50.4% of the total variance in the yield time series in recent decades. Anomalously high March rainfall (during budburst, shoot and inflorescence development) favours yield, as well as anomalously high temperatures and low precipitation amounts in May and June (May: flowering and June: berry development). The GYM was applied to a regional climate model output, which was shown to realistically reproduce the GYM predictors. Finally, using ensemble simulations under the A1B emission scenario, projections for GYM-derived yield in the Douro Region, and for the whole of the twenty-first century, were analysed. A slight upward trend in yield is projected to occur until about 2050, followed by a steep and continuous increase until the end of the twenty-first century, when yield is projected to be about 800 kg/ha above current values. While this estimate is based on meteorological parameters alone, changes due to elevated CO2 may further enhance this effect. In spite of the associated uncertainties, it can be stated that projected climate change may significantly benefit wine yield in the Douro Valley.
Resumo:
We compare future changes in global mean temperature in response to different future scenarios which, for the first time, arise from emission-driven rather than concentration-driven perturbed parameter ensemble of a global climate model (GCM). These new GCM simulations sample uncertainties in atmospheric feedbacks, land carbon cycle, ocean physics and aerosol sulphur cycle processes. We find broader ranges of projected temperature responses arising when considering emission rather than concentration-driven simulations (with 10–90th percentile ranges of 1.7 K for the aggressive mitigation scenario, up to 3.9 K for the high-end, business as usual scenario). A small minority of simulations resulting from combinations of strong atmospheric feedbacks and carbon cycle responses show temperature increases in excess of 9 K (RCP8.5) and even under aggressive mitigation (RCP2.6) temperatures in excess of 4 K. While the simulations point to much larger temperature ranges for emission-driven experiments, they do not change existing expectations (based on previous concentration-driven experiments) on the timescales over which different sources of uncertainty are important. The new simulations sample a range of future atmospheric concentrations for each emission scenario. Both in the case of SRES A1B and the Representative Concentration Pathways (RCPs), the concentration scenarios used to drive GCM ensembles, lies towards the lower end of our simulated distribution. This design decision (a legacy of previous assessments) is likely to lead concentration-driven experiments to under-sample strong feedback responses in future projections. Our ensemble of emission-driven simulations span the global temperature response of the CMIP5 emission-driven simulations, except at the low end. Combinations of low climate sensitivity and low carbon cycle feedbacks lead to a number of CMIP5 responses to lie below our ensemble range. The ensemble simulates a number of high-end responses which lie above the CMIP5 carbon cycle range. These high-end simulations can be linked to sampling a number of stronger carbon cycle feedbacks and to sampling climate sensitivities above 4.5 K. This latter aspect highlights the priority in identifying real-world climate-sensitivity constraints which, if achieved, would lead to reductions on the upper bound of projected global mean temperature change. The ensembles of simulations presented here provides a framework to explore relationships between present-day observables and future changes, while the large spread of future-projected changes highlights the ongoing need for such work.
Resumo:
We present a highly accurate tool for the simulation of shear Alfven waves (SAW) in collisionless plasma. SAW are important in space plasma environments because for small perpendicular scale lengths they can support an electric field parallel to the ambient magnetic field. Electrons can be accelerated by the parallel electric field and these waves have been implicated as the source of vibrant auroral displays. However, the parallel electric field carried by SAW is small in comparison to the perpendicular electric field of the wave, making it difficult to measure directly in the laboratory, or by satellites in the near-Earth plasma environment. In this paper, we present a simulation code that provides a means to study in detail the SAW-particle interaction in both space and laboratory plasma. Using idealised, small-amplitude propagating waves with a single perpendicular wavenumber, the simulation code accurately reproduces the damping rates and parallel electric field amplitudes predicted by linear theory for varying temperatures and perpendicular scale lengths. We present a rigorous kinetic derivation of the parallel electric field strength for small-amplitude SAW and show that commonly-used inertial and kinetic approximations are valid except for where the ratio of thermal to Alfv\'{e}n speed is between 0.7 and 1.0. We also present nonlinear simulations of large-amplitude waves and show that in cases of strong damping, the damping rates and parallel electric field strength deviate from linear predictions when wave energies are greater than only a few percent of the plasma kinetic energy, a situation which is often observed in the magnetosphere. The drift-kinetic code provides reliable, testable predictions of the parallel electric field strength which can be investigated directly in the laboratory, and will help to bridge the gap between studies of SAW in man-made and naturally occuring plasma.
Resumo:
Business process modelling can help an organisation better understand and improve its business processes. Most business process modelling methods adopt a task- or activity-based approach to identifying business processes. Within our work, we use activity theory to categorise elements within organisations as being either human beings, activities or artefacts. Due to the direct relationship between these three elements, an artefact-oriented approach to organisation analysis emerges. Organisational semiotics highlights the ontological dependency between affordances within an organisation. We analyse the ontological dependency between organisational elements, and therefore produce the ontology chart for artefact-oriented business process modelling in order to clarify the relationship between the elements of an organisation. Furthermore, we adopt the techniques from semantic analysis and norm analysis, of organisational semiotics, to develop the artefact-oriented method for business process modelling. The proposed method provides a novel perspective for identifying and analysing business processes, as well as agents and artefacts, as the artefact-oriented perspective demonstrates the fundamental flow of an organisation. The modelling results enable an organisation to understand and model its processes from an artefact perspective, viewing an organisation as a network of artefacts. The information and practice captured and stored in artefact can also be shared and reused between organisations that produce similar artefacts.
Resumo:
An idealised modelling study of sting-jet cyclones is presented. Sting jets are descending mesoscale jets that occur in some extratropical cyclones and produce localised regions of strong low-level winds in the frontal fracture region. Moist baroclinic lifecycle (LC1) simulations are performed with modifications to produce cyclones resembling observed sting-jet cyclones. A sting jet exists in the idealised control cyclone with similar characteristics to the sting jet in a simulation of windstorm Gudrun (a confirmed sting-jet case). Unlike in windstorm Gudrun, a low-level layer of strong moist static stability prohibits the descent of the strong winds from above the boundary layer to the surface in the idealised case. Conditional symmetric instability (CSI) exists in the cloud head and dissipates as the sting jet leaves the cloud head and descends. The descending, initially moist, sting-jet trajectories consistently have negative or near-zero saturated moist potential vorticity but moist static stability and inertial stability, consistent with CSI release; the moist static stability becomes negative during the period of most rapid descent, by which time the air is relatively dry implying conditional instability release is unlikely. Sensitivity experiments show that the existence of the sting jet is robust to changes in the initial state, and that the initial tropospheric static stability significantly impacts the descent rate of the sting jet. Inertial and conditional instability are probably being released in the experiment with the weakest initial static stability. This suggests that sting jets can arise through the release of all three instabilities associated with negative saturated moist potential vorticity. While evaporative cooling occurs along the sting-jet trajectories, a sensitivity experiment with evaporation effects turned off shows no significant change to the wind strength or descent rate of the sting jet implying that instability release is the dominant sting-jet driving mechanism.
Resumo:
Anaerobic digestion (AD) technologies convert organic wastes and crops into methane-rich biogas for heating, electricity generation and vehicle fuel. Farm-based AD has proliferated in some EU countries, driven by favourable policies promoting sustainable energy generation and GHG mitigation. Despite increased state support there are still few AD plants on UK farms leading to a lack of normative data on viability of AD in the whole-farm context. Farmers and lenders are therefore reluctant to fund AD projects and policy makers are hampered in their attempts to design policies that adequately support the industry. Existing AD studies and modelling tools do not adequately capture the farm context within which AD interacts. This paper demonstrates a whole-farm, optimisation modelling approach to assess the viability of AD in a more holistic way, accounting for such issues as: AD scale, synergies and conflicts with other farm enterprises, choice of feedstocks, digestate use and impact on farm Net Margin. This modelling approach demonstrates, for example, that: AD is complementary to dairy enterprises, but competes with arable enterprises for farm resources. Reduced nutrient purchases significantly improve Net Margin on arable farms, but AD scale is constrained by the capacity of farmland to absorb nutrients in AD digestate.
Resumo:
A dynamic size-structured model is developed for phytoplankton and nutrients in the oceanic mixed layer and applied to extract phytoplankton biomass at discrete size fractions from remotely sensed, ocean-colour data. General relationships between cell size and biophysical processes (such as sinking, grazing, and primary production) of phytoplankton were included in the model through a bottom–up approach. Time-dependent, mixed-layer depth was used as a forcing variable, and a sequential data-assimilation scheme was implemented to derive model trajectories. From a given time-series, the method produces estimates of size-structured biomass at every observation, so estimates seasonal succession of individual phytoplankton size, derived here from remote sensing for the first time. From these estimates, normalized phytoplankton biomass size spectra over a period of 9 years were calculated for one location in the North Atlantic. Further analysis demonstrated that strong relationships exist between the seasonal trends of the estimated size spectra and the mixed-layer depth, nutrient biomass, and total chlorophyll. The results contain useful information on the time-dependent biomass flux in the pelagic ecosystem.