492 resultados para 1477
Resumo:
Living up to its reputation as a highly variable climate system, the West African Monsoon (WAM) 2012 contrasted strikingly with the previous year. In 2011, the West African rainy season was delayed, patchy, and irregular. In 2012, whilst it was anomalously wet in many area, the Guinea coastal countries and some crucial agricultural regions remained very dry, persisting from the previous year. As a result, 2012 generated the third big food crisis to hit the region in the last seven years. The 2012 WAM forecast, observed climate conditions and the ongoing socio-economic implications for the region are reviewed here.
Resumo:
For an increasing number of applications, mesoscale modelling systems now aim to better represent urban areas. The complexity of processes resolved by urban parametrization schemes varies with the application. The concept of fitness-for-purpose is therefore critical for both the choice of parametrizations and the way in which the scheme should be evaluated. A systematic and objective model response analysis procedure (Multiobjective Shuffled Complex Evolution Metropolis (MOSCEM) algorithm) is used to assess the fitness of the single-layer urban canopy parametrization implemented in the Weather Research and Forecasting (WRF) model. The scheme is evaluated regarding its ability to simulate observed surface energy fluxes and the sensitivity to input parameters. Recent amendments are described, focussing on features which improve its applicability to numerical weather prediction, such as a reduced and physically more meaningful list of input parameters. The study shows a high sensitivity of the scheme to parameters characterizing roof properties in contrast to a low response to road-related ones. Problems in partitioning of energy between turbulent sensible and latent heat fluxes are also emphasized. Some initial guidelines to prioritize efforts to obtain urban land-cover class characteristics in WRF are provided. Copyright © 2010 Royal Meteorological Society and Crown Copyright.
Resumo:
We generalize the popular ensemble Kalman filter to an ensemble transform filter, in which the prior distribution can take the form of a Gaussian mixture or a Gaussian kernel density estimator. The design of the filter is based on a continuous formulation of the Bayesian filter analysis step. We call the new filter algorithm the ensemble Gaussian-mixture filter (EGMF). The EGMF is implemented for three simple test problems (Brownian dynamics in one dimension, Langevin dynamics in two dimensions and the three-dimensional Lorenz-63 model). It is demonstrated that the EGMF is capable of tracking systems with non-Gaussian uni- and multimodal ensemble distributions. Copyright © 2011 Royal Meteorological Society
Resumo:
This article analyses how listening is used to develop performances in Alecky Blythe’s verbatim theatre. Listening includes Blythe’s use of recorded oral interviews for devising performances, and also the actors’ creation of performance by precisely imitating an interviewee’s voice. The article focuses on listening, speaking and embodiment in London Road, Blythe’s recent musical play at London’s National Theatre, which adopted and modified theatre strategies used in her other plays, especially The Girlfriend Experience and Do We look Like Refugees. The article draws on interviews with performers and with Blythe herself, in its critical analysis of how voice legitimates claims to authenticity in performance. The work on Blythe is contextualised by brief comparative analyses. One is Clio Barnard’s film The Arbor, a ‘quasi-documentary’ on the playwright, Andrea Dunbar which makes use of an oral script to which the actors lip-sync. The other comparator is the Wooster Group’s Poor Theater, which attempts to recreate Grotowski's Akropolis via vocal impersonation. The article argues that voice in London Road both claims and defers authenticity and authority, inasmuch as voice signifies presence and embodied identity but the reworking of speech into song signals the absence of the real. The translation of voice into written surtitles works similarly in Do We Look Like Refugees. Blythe’s theatre, Barnard’s film and The Wooster Group’s performances are a useful framework for addressing questions of voice and identity, and authenticity and replication in documentary theatre. The article concludes by placing Blythe’s oral texts amid current debates around theatre’s textual practices.
Resumo:
We show that retrievals of sea surface temperature from satellite infrared imagery are prone to two forms of systematic error: prior error (familiar from the theory of atmospheric sounding) and error arising from nonlinearity. These errors have different complex geographical variations, related to the differing geographical distributions of the main geophysical variables that determine clear-sky brightness-temperatures over the oceans. We show that such errors arise as an intrinsic consequence of the form of the retrieval (rather than as a consequence of sub-optimally specified retrieval coefficients, as is often assumed) and that the pattern of observed errors can be simulated in detail using radiative-transfer modelling. The prior error has the linear form familiar from atmospheric sounding. A quadratic equation for nonlinearity error is derived, and it is verified that the nonlinearity error exhibits predominantly quadratic behaviour in this case.
Resumo:
Two recent works have adapted the Kalman–Bucy filter into an ensemble setting. In the first formulation, the ensemble of perturbations is updated by the solution of an ordinary differential equation (ODE) in pseudo-time, while the mean is updated as in the standard Kalman filter. In the second formulation, the full ensemble is updated in the analysis step as the solution of single set of ODEs in pseudo-time. Neither requires matrix inversions except for the frequently diagonal observation error covariance. We analyse the behaviour of the ODEs involved in these formulations. We demonstrate that they stiffen for large magnitudes of the ratio of background error to observational error variance, and that using the integration scheme proposed in both formulations can lead to failure. A numerical integration scheme that is both stable and is not computationally expensive is proposed. We develop transform-based alternatives for these Bucy-type approaches so that the integrations are computed in ensemble space where the variables are weights (of dimension equal to the ensemble size) rather than model variables. Finally, the performance of our ensemble transform Kalman–Bucy implementations is evaluated using three models: the 3-variable Lorenz 1963 model, the 40-variable Lorenz 1996 model, and a medium complexity atmospheric general circulation model known as SPEEDY. The results from all three models are encouraging and warrant further exploration of these assimilation techniques.
Resumo:
We propose and demonstrate a fully probabilistic (Bayesian) approach to the detection of cloudy pixels in thermal infrared (TIR) imagery observed from satellite over oceans. Using this approach, we show how to exploit the prior information and the fast forward modelling capability that are typically available in the operational context to obtain improved cloud detection. The probability of clear sky for each pixel is estimated by applying Bayes' theorem, and we describe how to apply Bayes' theorem to this problem in general terms. Joint probability density functions (PDFs) of the observations in the TIR channels are needed; the PDFs for clear conditions are calculable from forward modelling and those for cloudy conditions have been obtained empirically. Using analysis fields from numerical weather prediction as prior information, we apply the approach to imagery representative of imagers on polar-orbiting platforms. In comparison with the established cloud-screening scheme, the new technique decreases both the rate of failure to detect cloud contamination and the false-alarm rate by one quarter. The rate of occurrence of cloud-screening-related errors of >1 K in area-averaged SSTs is reduced by 83%. Copyright © 2005 Royal Meteorological Society.
Resumo:
In The Conduct of Inquiry in International Relations, Patrick Jackson situates methodologies in International Relations in relation to their underlying philosophical assumptions. One of his aims is to map International Relations debates in a way that ‘capture[s] current controversies’ (p. 40). This ambition is overstated: whilst Jackson’s typology is useful as a clarificatory tool, (re)classifying existing scholarship in International Relations is more problematic. One problem with Jackson’s approach is that he tends to run together the philosophical assumptions which decisively differentiate his methodologies (by stipulating a distinctive warrant for knowledge claims) and the explanatory strategies that are employed to generate such knowledge claims, suggesting that the latter are entailed by the former. In fact, the explanatory strategies which Jackson associates with each methodology reflect conventional practice in International Relations just as much as they reflect philosophical assumptions. This makes it more difficult to identify each methodology at work than Jackson implies. I illustrate this point through a critical analysis of Jackson’s controversial reclassification of Waltz as an analyticist, showing that whilst Jackson’s typology helps to expose inconsistencies in Waltz’s approach, it does not fully support the proposed reclassification. The conventional aspect of methodologies in International Relations also raises questions about the limits of Jackson’s ‘engaged pluralism’.
Resumo:
The parameterisation of diabatic processes in numerical models is critical for the accuracy of weather forecasts and for climate projections. A novel approach to the evaluation of these processes in models is introduced in this contribution. The approach combines a suite of on-line tracer diagnostics with off-line trajectory calculations. Each tracer tracks accumulative changes in potential temperature associated with a particular parameterised diabatic process in the model. A comparison of tracers therefore allows the identification of the most active diabatic processes and their downstream impacts. The tracers are combined with trajectories computed using model-resolved winds, allowing the various diabatic contributions to be tracked back to their time and location of occurrence. We have used this approach to investigate diabatic processes within a simulated extratropical cyclone. We focus on the warm conveyor belt, in which the dominant diabatic contributions come from large-scale latent heating and parameterised convection. By contrasting two simulations, one with standard convection parameterisation settings and another with reduced parameterised convection, the effects of parameterised convection on the structure of the cyclone have been determined. Under reduced parameterised convection conditions, the large-scale latent heating is forced to release convective instability that would otherwise have been released by the convection parameterisation. Although the spatial distribution of precipitation depends on the details of the split between parameterised convection and large-scale latent heating, the total precipitation amount associated with the cyclone remains largely unchanged. For reduced parameterised convection, a more rapid and stronger latent heating episode takes place as air ascends within the warm conveyor belt.
Resumo:
The optimal utilisation of hyper-spectral satellite observations in numerical weather prediction is often inhibited by incorrectly assuming independent interchannel observation errors. However, in order to represent these observation-error covariance structures, an accurate knowledge of the true variances and correlations is needed. This structure is likely to vary with observation type and assimilation system. The work in this article presents the initial results for the estimation of IASI interchannel observation-error correlations when the data are processed in the Met Office one-dimensional (1D-Var) and four-dimensional (4D-Var) variational assimilation systems. The method used to calculate the observation errors is a post-analysis diagnostic which utilises the background and analysis departures from the two systems. The results show significant differences in the source and structure of the observation errors when processed in the two different assimilation systems, but also highlight some common features. When the observations are processed in 1D-Var, the diagnosed error variances are approximately half the size of the error variances used in the current operational system and are very close in size to the instrument noise, suggesting that this is the main source of error. The errors contain no consistent correlations, with the exception of a handful of spectrally close channels. When the observations are processed in 4D-Var, we again find that the observation errors are being overestimated operationally, but the overestimation is significantly larger for many channels. In contrast to 1D-Var, the diagnosed error variances are often larger than the instrument noise in 4D-Var. It is postulated that horizontal errors of representation, not seen in 1D-Var, are a significant contributor to the overall error here. Finally, observation errors diagnosed from 4D-Var are found to contain strong, consistent correlation structures for channels sensitive to water vapour and surface properties.
Resumo:
The observation-error covariance matrix used in data assimilation contains contributions from instrument errors, representativity errors and errors introduced by the approximated observation operator. Forward model errors arise when the observation operator does not correctly model the observations or when observations can resolve spatial scales that the model cannot. Previous work to estimate the observation-error covariance matrix for particular observing instruments has shown that it contains signifcant correlations. In particular, correlations for humidity data are more significant than those for temperature. However it is not known what proportion of these correlations can be attributed to the representativity errors. In this article we apply an existing method for calculating representativity error, previously applied to an idealised system, to NWP data. We calculate horizontal errors of representativity for temperature and humidity using data from the Met Office high-resolution UK variable resolution model. Our results show that errors of representativity are correlated and more significant for specific humidity than temperature. We also find that representativity error varies with height. This suggests that the assimilation scheme may be improved if these errors are explicitly included in a data assimilation scheme. This article is published with the permission of the Controller of HMSO and the Queen's Printer for Scotland.
Resumo:
As in any field of scientific inquiry, advancements in the field of second language acquisition (SLA) rely in part on the interpretation and generalizability of study findings using quantitative data analysis and inferential statistics. While statistical techniques such as ANOVA and t-tests are widely used in second language research, this review article provides a review of a class of newer statistical models that have not yet been widely adopted in the field, but have garnered interest in other fields of language research. The class of statistical models called mixed-effects models are introduced, and the potential benefits of these models for the second language researcher are discussed. A simple example of mixed-effects data analysis using the statistical software package R (R Development Core Team, 2011) is provided as an introduction to the use of these statistical techniques, and to exemplify how such analyses can be reported in research articles. It is concluded that mixed-effects models provide the second language researcher with a powerful tool for the analysis of a variety of types of second language acquisition data.