975 resultados para Reading model
Resumo:
The Rose Review into the teaching of early reading recommended that the conceptual framework incorporated into the National Literacy Strategy Framework for Teaching – the Searchlights model of reading and its development – should be replaced by the Simple View of Reading. In this paper, we demonstrate how these two frameworks relate to each other, and show that nothing has been lost in this transformation from Searchlights to Simple View: on the contrary, much has been gained. That nothing has been lost is demonstrated by consideration of the underlying complexity inherent in each of the two dimensions delineated in the Simple View. That much has been gained is demonstrated by the increased understanding of each dimension that follows from careful scientific investigation of each. The better we understand what is involved in each dimension, the better placed we are to unravel and understand the essential, complex and continual interactions between each dimension which underlie skilled reading. This has clear implications for further improving the early teaching of reading.
Resumo:
Individuals with elevated levels of plasma low density lipoprotein (LDL) cholesterol (LDL-C) are considered to be at risk of developing coronary heart disease. LDL particles are removed from the blood by a process known as receptor-mediated endocytosis, which occurs mainly in the liver. A series of classical experiments delineated the major steps in the endocytotic process; apolipoprotein B-100 present on LDL particles binds to a specific receptor (LDL receptor, LDL-R) in specialized areas of the cell surface called clathrin-coated pits. The pit comprising the LDL-LDL-R complex is internalized forming a cytoplasmic endosome. Fusion of the endosome with a lysosome leads to degradation of the LDL into its constituent parts (that is, cholesterol, fatty acids, and amino acids), which are released for reuse by the cell, or are excreted. In this paper, we formulate a mathematical model of LDL endocytosis, consisting of a system of ordinary differential equations. We validate our model against existing in vitro experimental data, and we use it to explore differences in system behavior when a single bolus of extracellular LDL is supplied to cells, compared to when a continuous supply of LDL particles is available. Whereas the former situation is common to in vitro experimental systems, the latter better reflects the in vivo situation. We use asymptotic analysis and numerical simulations to study the longtime behavior of model solutions. The implications of model-derived insights for experimental design are discussed.
Resumo:
The development and performance of a three-stage tubular model of the large human intestine is outlined. Each stage comprises a membrane fermenter where flow of an aqueous polyethylene glycol solution on the outside of the tubular membrane is used to control the removal of water and metabolites (principally short chain fatty acids) from, and thus the pH of, the flowing contents on the fermenter side. The three stage system gave a fair representation of conditions in the human gut. Numbers of the main bacterial groups were consistently higher than in an existing three-chemostat gut model system, suggesting the advantages of the new design in providing an environment for bacterial growth to represent the actual colonic microflora. Concentrations of short chain fatty acids and Ph levels throughout the system were similar to those associated with corresponding sections of the human colon. The model was able to achieve considerable water transfer across the membrane, although the values were not as high as those in the colon. The model thus goes some way towards a realistic simulation of the colon, although it makes no pretence to simulate the pulsating nature of the real flow. The flow conditions in each section are characterized by low Reynolds numbers: mixing due to Taylor dispersion is significant, and the implications of Taylor mixing and biofilm development for the stability, that is the ability to operate without washout, of the system are briefly analysed and discussed. It is concluded that both phenomena are important for stabilizing the model and the human colon.
Resumo:
Controlled human intervention trials are required to confirm the hypothesis that dietary fat quality may influence insulin action. The aim was to develop a food-exchange model, suitable for use in free-living volunteers, to investigate the effects of four experimental diets distinct in fat quantity and quality: high SFA (HSFA); high MUFA (HMUFA) and two low-fat (LF) diets, one supplemented with 1.24g EPA and DHA/d (LFn-3). A theoretical food-exchange model was developed. The average quantity of exchangeable fat was calculated as the sum of fat provided by added fats (spreads and oils), milk, cheese, biscuits, cakes, buns and pastries using data from the National Diet and Nutrition Survey of UK adults. Most of the exchangeable fat was replaced by specifically designed study foods. Also critical to the model was the use of carbohydrate exchanges to ensure the diets were isoenergetic. Volunteers from eight centres across Europe completed the dietary intervention. Results indicated that compositional targets were largely achieved with significant differences in fat quantity between the high-fat diets (39.9 (SEM 0.6) and 38.9 (SEM 0.51) percentage energy (%E) from fat for the HSFA and HMUFA diets respectively) and the low-fat diets (29.6 (SEM 0.6) and 29.1 (SEM 0.5) %E from fat for the LF and LFn-3 diets respectively) and fat quality (17.5 (SEM 0.3) and 10.4 (SEM 0.2) %E front SFA and 12.7 (SEM 0.3) and 18.7 (SEM 0.4) %E MUFA for the HSFA and HMUFA diets respectively). In conclusion, a robust, flexible food-exchange model was developed and implemented successfully in the LIPGENE dietary intervention trial.
Resumo:
The aim of this study was to investigate the effect of kilning and roasting temperatures on antioxidant activity of malt model systems prepared from combinations of glucose, proline, and ferulic acid. Model systems (initial a(w) = 0.09, 6 % moisture) were heated at 60 degrees C for up to 24 h, at 90 degrees C for up to 120 min, and at 220 degrees C for up to 15 min. The antioxidant activity of the glucose-proline-ferulic acid model system increased significantly on heating at 60 degrees C; for 24 h or at 90 degrees C for 120 min. In contrast, the glucose-proline, ferulic acid-glucose, and ferulic acid-proline systems presented either nonsignificantly increased or unchanged antioxidant activity. The antioxidant activity of both the glucose-proline-ferulic acid and glucose-proline model systems increased significantly after heating at 220 degrees C for 10 min, followed by a significant decrease at 15 min. The data suggest that (1) at 60 degrees C, ferulic acid reacts with Maillard reaction products, resulting in a significant increase in antioxidant activity; (2) at 90 degrees C, the antioxidant activity of the glucose-proline-ferulic system comes from both ferulic acid and Maillard reaction products; and (3) at 220 degrees C, the major contributors to antioxidant activity in glucose-proline-ferulic acid and glucose-proline systems are glucose-proline reaction products.
Resumo:
A fermentation system was designed to model the human colonic microflora in vitro. The system provided a framework of mucin beads to encourage the adhesion of bacteria, which was encased within a dialysis membrane. The void between the beads was inoculated with faeces from human donors. Water and metabolites were removed from the fermentation by osmosis using a solution of polyethylene glycol (PEG). The system was concomitantly inoculated alongside a conventional single-stage chemostat. Three fermentations were carried out using inocula from three healthy human donors. Bacterial populations from the chemostat and biofilm system were enumerated using fluorescence in situ hybridization. The culture fluid was also analysed for its short-chain fatty acid (SCFA) content. A higher cell density was achieved in the biofilm fermentation system (taking into account the contribution made by the bead-associated bacteria) as compared with the chemostat, owing to the removal of water and metabolites. Evaluation of the bacterial populations revealed that the biofilm system was able to support two distinct groups of bacteria: bacteria growing in association with the mucin beads and planktonic bacteria in the culture fluid. Furthermore, distinct differences were observed between populations in the biofilm fermenter system and the chemostat, with the former supporting higher populations of clostridia and Escherichia coli. SCFA levels were lower in the biofilm system than in the chemostat, as in the former they were removed via the osmotic effect of the PEG. These experiments demonstrated the potential usefulness of the biofilm system for investigating the complexity of the human colonic microflora and the contribution made by sessile bacterial populations.
Resumo:
Irreversible binding of key flavour disulphides to ovalbumin has been shown previously to occur in model systems. The extent of binding is determined by the availability of the sulphydryl groups to participate in disulphide exchange, influenced either by pH, or the state of the protein (native or heat-denatured). In this study, two further proteins, one with sulphydryl groups available in the native state (beta-lactoglobulin) and one with no sulphydryl groups in the native state (lysozyme) were used to confirm this hypothesis. When the investigation was extended to real food systems, a similar effect was shown when a commercial meat flavouring containing disulphides was added to heat-denatured ovalbumin. Furthermore, comparison of the volatiles generated from onions, cooked either alone, or in the presence of meat, showed a significant reduction of key onion-derived disulphides when cooked in the presence of meat, and an even greater reduction of trisulphides. These findings may have implications for consumer acceptance of food products; where these compounds are used as flavourings or where they occur naturally.
Resumo:
Our objective in this study was to develop and implement an effective intervention strategy to manipulate the amount and composition of dietary fat and carbohydrate (CHO) in free-living individuals in the RISCK study. The study was a randomized, controlled dietary intervention study that was conducted in 720 participants identified as higher risk for or with metabolic syndrome. All followed a 4-wk run-in reference diet [high saturated fatty acids (SF)/high glycemic index (GI)]. Volunteers were randomized to continue this diet for a further 24 wk or to I of 4 isoenergetic prescriptions [high monounsaturated fatty acids (MUFA)/high GI; high MUFA/low GI; low fat (LF)/high GI; and LF/low GI]. We developed a food exchange model to implement each diet. Dietary records and plasma phospholipid fatty acids were used to assess the effectiveness of the intervention strategy. Reported fat intake from the LF diets was significantly reduced to 28% of energy (%E) compared with 38% E from the HM and LF diets. SF intake was successfully decreased in the HM and LF diets was similar to 10% E compared with 17% E in the reference diet (P = 0.001). Dietary MUFA in the HIM diets was similar to 17% E, significantly higher than in the reference (12% E) and LF diets (10% E) (P = 0.001). Changes in plasma phospholipid fatty acids provided further evidence for the successful manipulation of fat intake. The GI of the HGI and LGI arms differed by similar to 9 points (P = 0.001). The food exchange model provided an effective dietary strategy for the design and implementation across multiple sites of 5 experimental diets with specific targets for the proportion of fat and CHO. J. Nutr. 139: 1534-1540, 2009.
Resumo:
The use of glycine to limit acrylamide formation during the heating of a potato model system was also found to alter the relative proportions of alkylpyrazines. The addition of glycine increased the quantities of several alkylpyrazines, and labeling studies using [2-C-13]glycine showed that those alkylpyrazines which increased in the presence of glycine had at least one C-13-labeled methyl substituent derived from glycine. The distribution of C-13 within the pyrazines suggested two pathways by which glycine, and other amino acids, participate in alkylpyrazine formation, and showed the relative contribution of each pathway. Alkylpyrazines that involve glycine in both formation pathways displayed the largest relative increases with glycine addition. The study provided an insight into the sensitivity of alkylpyrazine formation to the amino acid composition in a heated food and demonstrated the importance of those amino acids that are able to contribute an alkyl substituent. This may aid in estimating the impact of amino acid addition on pyrazine formation, when amino acids are added to foods for acrylamide mitigation.
Resumo:
Acrylamide levels in cooked/processed food can be reduced by treatment with citric acid or glycine. In a potato model system cooked at 180 degrees C for 10-60 min, these treatments affected the volatile profiles. Strecker aldehydes and alkylpyrazines, key flavor compounds of cooked potato, were monitored. Citric acid limited the generation of volatiles, particularly the alkylpyrazines. Glycine increased the total volatile yield by promoting the formation of certain alkylpyrazines, namely, 2,3-dimethylpyrazine, trimethylpyrazine, 2-ethyl-3,5-dimethylpyrazine, tetramethylpyrazine, and 2,5-diethyl-3- methylpyrazine. However, the formation of other pyrazines and Strecker aldehydes was suppressed. It was proposed that the opposing effects of these treatments on total volatile yield may be used to best advantage by employing a combined treatment at lower concentrations, especially as both treatments were found to have an additive effect in reducing acrylamide. This would minimize the impact on flavor but still achieve the desired reduction in acrylamide levels.
Resumo:
Acrylamide and pyrazine formation, as influenced by the incorporation of different amino acids, was investigated in sealed low-moisture asparagine-glucose model systems. Added amino acids, with the exception of glycine and cysteine and at an equimolar concentration to asparagine, increased the rate of acrylamide formation. The strong correlation between the unsubstituted pyrazine and acrylamide suggests the promotion of the formation of Maillard reaction intermediates, and in particular glyoxal, as the determining mode of-action. At increased amino acid concentrations, diverse effects were observed. The initial rates of acrylamide formation remained high for valine, alanine, phenylalanine, tryptophan, glutamine, and Ieucine, while a significant mitigating effect, as evident from the acrylamide yields after 60 min of heating at 160 degrees C, was observed for proline, tryptophan, glycine, and cysteine. The secondary amine containing amino acids, proline and tryptophan, had the most profound mitigating effect on acrylamide after 60 min of heating. The relative importance of the competing effect of added amino acids for alpha-dicarbonyls and acrylamide-amino, acid alkylation reactions is discussed and accompanied by data on the relative formation rates of selected amino acid-AA adducts.
Resumo:
The effect of different sugars and glyoxal on the formation of acrylamide in low-moisture starch-based model systems was studied, and kinetic data were obtained. Glucose was more effective than fructose, tagatose, or maltose in acrylamide formation, whereas the importance of glyoxal as a key sugar fragmentation intermediate was confirmed. Glyoxal formation was greater in model systems containing asparagine and glucose rather than fructose. A solid phase microextraction GC-MS method was employed to determine quantitatively the formation of pyrazines in model reaction systems. Substituted pyrazine formation was more evident in model systems containing fructose; however, the unsubstituted homologue, which was the only pyrazine identified in the headspace of glyoxal-asparagine systems, was formed at higher yields when aldoses were used as the reducing sugar. Highly significant correlations were obtained for the relationship between pyrazine and acrylamide formation. The importance of the tautomerization of the asparagine-carbonyl decarboxylated Schiff base in the relative yields of pyrazines and acrylamide is discussed.
Resumo:
Fecal water (FW) has been shown to exert, in cultured cells, cytotoxic and genotoxic effects that have implications for colorectal cancer (CRC) risk. We have investigated a further biological activity of FW, namely, the ability to affect gap junctions in CACO2 cell monolayers as an index of mucosal barrier function, which is known to be disrupted in cancer. FW samples fi-om healthy, free-living, European subjects that were divided into two broad age groups, adult (40 +/- 9.7 yr; n = 53) and elderly (76 +/- 7.5 yr; n = 55) were tested for effects on gap junction using the transepithelial resistance (TER) assay. Overall, treatment of CACO2 cells with FW samples fi-om adults increased TER (+ 4 %), whereas FW from elderly subjects decreased TER (-5%); the difference between the two groups was significant (P < 0.05). We also measured several components of FW potentially associated with modulation of TER, namely, short-chain fatty acid (SCFA) and ammonia. SCFAs (propionic, acetic, and n-butyric) were significantly lower in the elderly population (-30%, -35%, and -21%, respectively, all P pound 0.01). We consider that FW modulation of in vitro epithelial barrier function is a potentially useful noninvasive biomarker, but it requires further validation to establish its relationship to CRC risk.