336 resultados para Pethahiah, of Regensburg, fl. 1175-1190.
Resumo:
Multiple alternating zonal jets are a ubiquitous feature of planetary atmospheres and oceans. However, most studies to date have focused on the special case of barotropic jets. Here, the dynamics of freely evolving baroclinic jets are investigated using a two-layer quasigeostrophic annulus model with sloping topography. In a suite of 15 numerical simulations, the baroclinic Rossby radius and baroclinic Rhines scale are sampled by varying the stratification and root-mean-square eddy velocity, respectively. Small-scale eddies in the initial state evolve through geostrophic turbulence and accelerate zonally as they grow in horizontal scale, first isotropically and then anisotropically. This process leads ultimately to the formation of jets, which take about 2500 rotation periods to equilibrate. The kinetic energy spectrum of the equilibrated baroclinic zonal flow steepens from a −3 power law at small scales to a −5 power law near the jet scale. The conditions most favorable for producing multiple alternating baroclinic jets are large baroclinic Rossby radius (i.e., strong stratification) and small baroclinic Rhines scale (i.e., weak root-mean-square eddy velocity). The baroclinic jet width is diagnosed objectively and found to be 2.2–2.8 times larger than the baroclinic Rhines scale, with a best estimate of 2.5 times larger. This finding suggests that Rossby wave motions must be moving at speeds of approximately 6 times the turbulent eddy velocity in order to be capable of arresting the isotropic inverse energy cascade.
Resumo:
Future land cover will have a significant impact on climate and is strongly influenced by the extent of agricultural land use. Differing assumptions of crop yield increase and carbon pricing mitigation strategies affect projected expansion of agricultural land in future scenarios. In the representative concentration pathway 4.5 (RCP4.5) from phase 5 of the Coupled Model Intercomparison Project (CMIP5), the carbon effects of these land cover changes are included, although the biogeophysical effects are not. The afforestation in RCP4.5 has important biogeophysical impacts on climate, in addition to the land carbon changes, which are directly related to the assumption of crop yield increase and the universal carbon tax. To investigate the biogeophysical climatic impact of combinations of agricultural crop yield increases and carbon pricing mitigation, five scenarios of land-use change based on RCP4.5 are used as inputs to an earth system model [Hadley Centre Global Environment Model, version 2-Earth System (HadGEM2-ES)]. In the scenario with the greatest increase in agricultural land (as a result of no increase in crop yield and no climate mitigation) there is a significant -0.49 K worldwide cooling by 2100 compared to a control scenario with no land-use change. Regional cooling is up to -2.2 K annually in northeastern Asia. Including carbon feedbacks from the land-use change gives a small global cooling of -0.067 K. This work shows that there are significant impacts from biogeophysical land-use changes caused by assumptions of crop yield and carbon mitigation, which mean that land carbon is not the whole story. It also elucidates the potential conflict between cooling from biogeophysical climate effects of land-use change and wider environmental aims.
Resumo:
High-resolution simulations over a large tropical domain (∼20◦S–20◦N and 42◦E–180◦E) using both explicit and parameterized convection are analyzed and compared during a 10-day case study of an active Madden-Julian Oscillation (MJO) event. In Part II, the moisture budgets and moist entropy budgets are analyzed. Vertical subgrid diabatic heating profiles and vertical velocity profiles are also compared; these are related to the horizontal and vertical advective components of the moist entropy budget which contribute to gross moist stability, GMS, and normalized GMS (NGMS). The 4-km model with explicit convection and good MJO performance has a vertical heating structure that increases with height in the lower troposphere in regions of strong convection (like observations), whereas the 12-km model with parameterized convection and a poor MJO does not show this relationship. The 4-km explicit convection model also has a more top-heavy heating profile for the troposphere as a whole near and to the west of the active MJO-related convection, unlike the 12-km parameterized convection model. The dependence of entropy advection components on moisture convergence is fairly weak in all models, and differences between models are not always related to MJO performance, making comparisons to previous work somewhat inconclusive. However, models with relatively good MJO strength and propagation have a slightly larger increase of the vertical advective component with increasing moisture convergence, and their NGMS vertical terms have more variability in time and longitude, with total NGMS that is comparatively larger to the west and smaller to the east.
Resumo:
As satellite technology develops, satellite rainfall estimates are likely to become ever more important in the world of food security. It is therefore vital to be able to identify the uncertainty of such estimates and for end users to be able to use this information in a meaningful way. This paper presents new developments in the methodology of simulating satellite rainfall ensembles from thermal infrared satellite data. Although the basic sequential simulation methodology has been developed in previous studies, it was not suitable for use in regions with more complex terrain and limited calibration data. Developments in this work include the creation of a multithreshold, multizone calibration procedure, plus investigations into the causes of an overestimation of low rainfall amounts and the best way to take into account clustered calibration data. A case study of the Ethiopian highlands has been used as an illustration.
Resumo:
Flow in geophysical fluids is commonly summarized by coherent streams, for example conveyor belt flows in extratropical cyclones or jet streaks in the upper troposphere. Typically, parcel trajectories are calculated from the flow field and subjective thresholds are used to distinguish coherent streams of interest. This methodology contribution develops a more objective approach to distinguish coherent airstreams within extratropical cyclones. Agglomerative clustering is applied to trajectories along with a method to identify the optimal number of cluster classes. The methodology is applied to trajectories associated with the low-level jets of a well-studied extratropical cyclone. For computational efficiency, a constraint that trajectories must pass through these jet regions is applied prior to clustering; the partitioning into different airstreams is then performed by the agglomerative clustering. It is demonstrated that the methodology can identify the salient flow structures of cyclones: the warm and cold conveyor belts. A test focusing on the airstreams terminating at the tip of the bent-back front further demonstrates the success of the method in that it can distinguish fine-scale flow structure such as descending sting jet airstreams.
Resumo:
A new coupled cloud physics–radiation parameterization of the bulk optical properties of ice clouds is presented. The parameterization is consistent with assumptions in the cloud physics scheme regarding particle size distributions (PSDs) and mass–dimensional relationships. The parameterization is based on a weighted ice crystal habit mixture model, and its bulk optical properties are parameterized as simple functions of wavelength and ice water content (IWC). This approach directly couples IWC to the bulk optical properties, negating the need for diagnosed variables, such as the ice crystal effective dimension. The parameterization is implemented into the Met Office Unified Model Global Atmosphere 5.0 (GA5) configuration. The GA5 configuration is used to simulate the annual 20-yr shortwave (SW) and longwave (LW) fluxes at the top of the atmosphere (TOA), as well as the temperature structure of the atmosphere, under various microphysical assumptions. The coupled parameterization is directly compared against the current operational radiation parameterization, while maintaining the same cloud physics assumptions. In this experiment, the impacts of the two parameterizations on the SW and LW radiative effects at TOA are also investigated and compared against observations. The 20-yr simulations are compared against the latest observations of the atmospheric temperature and radiative fluxes at TOA. The comparisons demonstrate that the choice of PSD and the assumed ice crystal shape distribution are as important as each other. Moreover, the consistent radiation parameterization removes a long-standing tropical troposphere cold temperature bias but slightly warms the southern midlatitudes by about 0.5 K.