347 resultados para Oscillatory Marangoni-Convection
Resumo:
In this work, the Cloud Feedback Model Intercomparison (CFMIP) Observation Simulation Package (COSP) is expanded to include scattering and emission effects of clouds and precipitation at passive microwave frequencies. This represents an advancement over the official version of COSP (version 1.4.0) in which only clear-sky brightness temperatures are simulated. To highlight the potential utility of this new microwave simulator, COSP results generated using the climate model EC-Earth's version 3 atmosphere as input are compared with Microwave Humidity Sounder (MHS) channel (190.311 GHz) observations. Specifically, simulated seasonal brightness temperatures (TB) are contrasted with MHS observations for the period December 2005 to November 2006 to identify possible biases in EC-Earth's cloud and atmosphere fields. The EC-Earth's atmosphere closely reproduces the microwave signature of many of the major large-scale and regional scale features of the atmosphere and surface. Moreover, greater than 60 % of the simulated TB are within 3 K of the NOAA-18 observations. However, COSP is unable to simulate sufficiently low TB in areas of frequent deep convection. Within the Tropics, the model's atmosphere can yield an underestimation of TB by nearly 30 K for cloudy areas in the ITCZ. Possible reasons for this discrepancy include both incorrect amount of cloud ice water in the model simulations and incorrect ice particle scattering assumptions used in the COSP microwave forward model. These multiple sources of error highlight the non-unique nature of the simulated satellite measurements, a problem exacerbated by the fact that EC-Earth lacks detailed micro-physical parameters necessary for accurate forward model calculations. Such issues limit the robustness of our evaluation and suggest a general note of caution when making COSP-satellite observation evaluations.
Resumo:
With the development of convection-permitting numerical weather prediction the efficient use of high resolution observations in data assimilation is becoming increasingly important. The operational assimilation of these observations, such as Dopplerradar radial winds, is now common, though to avoid violating the assumption of un- correlated observation errors the observation density is severely reduced. To improve the quantity of observations used and the impact that they have on the forecast will require the introduction of the full, potentially correlated, error statistics. In this work, observation error statistics are calculated for the Doppler radar radial winds that are assimilated into the Met Office high resolution UK model using a diagnostic that makes use of statistical averages of observation-minus-background and observation-minus-analysis residuals. This is the first in-depth study using the diagnostic to estimate both horizontal and along-beam correlated observation errors. By considering the new results obtained it is found that the Doppler radar radial wind error standard deviations are similar to those used operationally and increase as the observation height increases. Surprisingly the estimated observation error correlation length scales are longer than the operational thinning distance. They are dependent on both the height of the observation and on the distance of the observation away from the radar. Further tests show that the long correlations cannot be attributed to the use of superobservations or the background error covariance matrix used in the assimilation. The large horizontal correlation length scales are, however, in part, a result of using a simplified observation operator.
Resumo:
Initializing the ocean for decadal predictability studies is a challenge, as it requires reconstructing the little observed subsurface trajectory of ocean variability. In this study we explore to what extent surface nudging using well-observed sea surface temperature (SST) can reconstruct the deeper ocean variations for the 1949–2005 period. An ensemble made with a nudged version of the IPSLCM5A model and compared to ocean reanalyses and reconstructed datasets. The SST is restored to observations using a physically-based relaxation coefficient, in contrast to earlier studies, which use a much larger value. The assessment is restricted to the regions where the ocean reanalyses agree, i.e. in the upper 500 m of the ocean, although this can be latitude and basin dependent. Significant reconstruction of the subsurface is achieved in specific regions, namely region of subduction in the subtropical Atlantic, below the thermocline in the equatorial Pacific and, in some cases, in the North Atlantic deep convection regions. Beyond the mean correlations, ocean integrals are used to explore the time evolution of the correlation over 20-year windows. Classical fixed depth heat content diagnostics do not exhibit any significant reconstruction between the different existing observation-based references and can therefore not be used to assess global average time-varying correlations in the nudged simulations. Using the physically based average temperature above an isotherm (14 °C) alleviates this issue in the tropics and subtropics and shows significant reconstruction of these quantities in the nudged simulations for several decades. This skill is attributed to the wind stress reconstruction in the tropics, as already demonstrated in a perfect model study using the same model. Thus, we also show here the robustness of this result in an historical and observational context.
Resumo:
Initialising the ocean internal variability for decadal predictability studies is a new area of research and a variety of ad hoc methods are currently proposed. In this study, we explore how nudging with sea surface temperature (SST) and salinity (SSS) can reconstruct the three-dimensional variability of the ocean in a perfect model framework. This approach builds on the hypothesis that oceanic processes themselves will transport the surface information into the ocean interior as seen in ocean-only simulations. Five nudged simulations are designed to reconstruct a 150 years “target” simulation, defined as a portion of a long control simulation. The nudged simulations differ by the variables restored to, SST or SST + SSS, and by the area where the nudging is applied. The strength of the heat flux feedback is diagnosed from observations and the restoring coefficients for SSS use the same time-scale. We observed that this choice prevents spurious convection at high latitudes and near sea-ice border when nudging both SST and SSS. In the tropics, nudging the SST is enough to reconstruct the tropical atmosphere circulation and the associated dynamical and thermodynamical impacts on the underlying ocean. In the tropical Pacific Ocean, the profiles for temperature show a significant correlation from the surface down to 2,000 m, due to dynamical adjustment of the isopycnals. At mid-to-high latitudes, SSS nudging is required to reconstruct both the temperature and the salinity below the seasonal thermocline. This is particularly true in the North Atlantic where adding SSS nudging enables to reconstruct the deep convection regions of the target. By initiating a previously documented 20-year cycle of the model, the SST + SSS nudging is also able to reproduce most of the AMOC variations, a key source of decadal predictability. Reconstruction at depth does not significantly improve with amount of time spent nudging and the efficiency of the surface nudging rather depends on the period/events considered. The joint SST + SSS nudging applied everywhere is the most efficient approach. It ensures that the right water masses are formed at the right surface density, the subsequent circulation, subduction and deep convection further transporting them at depth. The results of this study underline the potential key role of SSS for decadal predictability and further make the case for sustained large-scale observations of this field.
Resumo:
El Niño events are a prominent feature of climate variability with global climatic impacts. The 1997/98 episode, often referred to as ‘the climate event of the twentieth century’1, 2, and the 1982/83 extreme El Niño3, featured a pronounced eastward extension of the west Pacific warm pool and development of atmospheric convection, and hence a huge rainfall increase, in the usually cold and dry equatorial eastern Pacific. Such a massive reorganization of atmospheric convection, which we define as an extreme El Niño, severely disrupted global weather patterns, affecting ecosystems4, 5, agriculture6, tropical cyclones, drought, bushfires, floods and other extreme weather events worldwide3, 7, 8, 9. Potential future changes in such extreme El Niño occurrences could have profound socio-economic consequences. Here we present climate modelling evidence for a doubling in the occurrences in the future in response to greenhouse warming. We estimate the change by aggregating results from climate models in the Coupled Model Intercomparison Project phases 3 (CMIP3; ref. 10) and 5 (CMIP5; ref. 11) multi-model databases, and a perturbed physics ensemble12. The increased frequency arises from a projected surface warming over the eastern equatorial Pacific that occurs faster than in the surrounding ocean waters13, 14, facilitating more occurrences of atmospheric convection in the eastern equatorial region.
Resumo:
Idealized explicit convection simulations of the Met Office Unified Model exhibit spontaneous self-aggregation in radiative-convective equilibrium, as seen in other models in previous studies. This self-aggregation is linked to feedbacks between radiation, surface fluxes, and convection, and the organization is intimately related to the evolution of the column water vapor field. Analysis of the budget of the spatial variance of column-integrated frozen moist static energy (MSE), following Wing and Emanuel [2014], reveals that the direct radiative feedback (including significant cloud longwave effects) is dominant in both the initial development of self-aggregation and the maintenance of an aggregated state. A low-level circulation at intermediate stages of aggregation does appear to transport MSE from drier to moister regions, but this circulation is mostly balanced by other advective effects of opposite sign and is forced by horizontal anomalies of convective heating (not radiation). Sensitivity studies with either fixed prescribed radiative cooling, fixed prescribed surface fluxes, or both do not show full self-aggregation from homogeneous initial conditions, though fixed surface fluxes do not disaggregate an initialized aggregated state. A sensitivity study in which rain evaporation is turned off shows more rapid self-aggregation, while a run with this change plus fixed radiative cooling still shows strong self-aggregation, supporting a “moisture memory” effect found in Muller and Bony [2015]. Interestingly, self-aggregation occurs even in simulations with sea surface temperatures (SSTs) of 295 K and 290 K, with direct radiative feedbacks dominating the budget of MSE variance, in contrast to results in some previous studies.
Resumo:
Substantial low-frequency rainfall fluctuations occurred in the Sahel throughout the twentieth century, causing devastating drought. Modeling these low-frequency rainfall fluctuations has remained problematic for climate models for many years. Here we show using a combination of state-of-the-art rainfall observations and high-resolution global climate models that changes in organized heavy rainfall events carry most of the rainfall variability in the Sahel at multiannual to decadal time scales. Ability to produce intense, organized convection allows climate models to correctly simulate the magnitude of late-twentieth century rainfall change, underlining the importance of model resolution. Increasing model resolution allows a better coupling between large-scale circulation changes and regional rainfall processes over the Sahel. These results provide a strong basis for developing more reliable and skilful long-term predictions of rainfall (seasons to years) which could benefit many sectors in the region by allowing early adaptation to impending extremes.
Resumo:
State-of-the-art regional climate model simulations that are able to resolve key mesoscale circulations are used, for the first time, to understand the interaction between the large-scale convective environment of the MJO and processes governing the strong diurnal cycle over the islands of the Maritime Continent (MC). Convection is sustained in the late afternoon just inland of the coasts due to sea breeze convergence. Previous work has shown that the variability in MC rainfall associated with the MJO is manifested in changes to this diurnal cycle; land-based rainfall peaks before the active convective envelope of the MJO reaches the MC, whereas oceanic rainfall rates peak whilst the active envelope resides over the region. The model simulations show that the main controls on oceanic MC rainfall in the early active MJO phases are the large-scale environment and atmospheric stability, followed by high oceanic latent heat flux forced by high near-surface winds in the later active MJO phases. Over land, rainfall peaks before the main convective envelope arrives (in agreement with observations), even though the large-scale convective environment is only moderately favourable for convection. The causes of this early rainfall peak are convective triggers from land-sea breeze circulations that are strong due to high surface insolation and surface heating. During the peak MJO phases cloud cover increases and surface insolation decreases, which weakens the strength of the mesoscale circulations and reduces land-based rainfall, even though the large-scale environment remains favourable for convection at this time. Hence, scale interactions are an essential part of the MJO transition across the MC.
Resumo:
A simple polynya flux model driven by standard atmospheric forcing is used to investigate the ice formation that took place during an exceptionally strong and consistent western New Siberian (WNS) polynya event in 2004 in the Laptev Sea. Whether formation rates are high enough to erode the stratification of the water column beneath is examined by adding the brine released during the 2004 polynya event to the average winter density stratification of the water body, preconditioned by summers with a cyclonic atmospheric forcing (comparatively weakly stratified water column). Beforehand, the model performance is tested through a simulation of a well‐documented event in April 2008. Neglecting the replenishment of water masses by advection into the polynya area, we find the probability for the occurrence of density‐driven convection down to the bottom to be low. Our findings can be explained by the distinct vertical density gradient that characterizes the area of the WNS polynya and the apparent lack of extreme events in the eastern Laptev Sea. The simple approach is expected to be sufficiently rigorous, since the simulated event is exceptionally strong and consistent, the ice production and salt rejection rates are likely to be overestimated, and the amount of salt rejected is distrusted over a comparatively weakly stratified water column. We conclude that the observed erosion of the halocline and formation of vertically mixed water layers during a WNS polynya event is therefore predominantly related to wind‐ and tidally driven turbulent mixing processes.
Resumo:
Convection-permitting modelling has led to a step change in forecasting convective events. However, convection occurs within different regimes which exhibit different forecast behaviour. A convective adjustment timescale can be used to distinguish between these regimes and examine their associated predictability. The convective adjustment timescale is calculated from radiosonde ascents and found to be consistent with that derived from convection-permitting model forecasts. The model-derived convective adjustment timescale is then examined for three summers in the British Isles to determine characteristics of the convective regimes for this maritime region. Convection in the British Isles is predominantly in convective quasi-equilibrium with 85%of convection having a timescale less than or equal to three hours. This percentage varies spatially with more non-equilibriumevents occurring in the south and southwest. The convective adjustment timescale exhibits a diurnal cycle over land. The nonequilibrium regime occurs more frequently at mid-range wind speeds and with winds from southerly to westerly sectors. Most non-equilibrium convective events in the British Isles are initiated near large coastal orographic gradients or on the European continent. Thus, the convective adjustment timescale is greatest when the location being examined is immediately downstream of large orographic gradients and decreases with distance from the convective initiation region. The dominance of convective quasiequilibrium conditions over the British Isles argues for the use of large-member ensembles in probabilistic forecasts for this region.
Resumo:
The cold sector of a midlatitude storm is characterized by distinctive features such as strong surface heat fluxes, shallow convection, convective precipitation and synoptic subsidence. In order to evaluate the contribution of processes occurring in the cold sector to the mean climate, an appropriate indicator is needed. This study describes the systematic presence of negative potential vorticity (PV) behind the cold front of extratropical storms in winter. The origin of this negative PV is analyzed using ERA-Interim data, and PV tendencies averaged over the depth of the boundary layer are evaluated. It is found that negative PV is generated by diabatic processes in the cold sector and by Ekman pumping at the low centre, whereas positive PV is generated by Ekman advection of potential temperature in the warm sector. We suggest here that negative PV at low levels can be used to identify the cold sector. A PV-based indicator is applied to estimate the respective contributions of the cold sector and the remainder of the storm to upward motion and large-scale and convective precipitation. We compare the PV-based indicator with other distinctive features that could be used as markers of the cold sector and find that potential vorticity is the best criterion when taken alone and the best when combined with any other.
Resumo:
The collective representation within global models of aerosol, cloud, precipitation, and their radiative properties remains unsatisfactory. They constitute the largest source of uncertainty in predictions of climatic change and hamper the ability of numerical weather prediction models to forecast high-impact weather events. The joint European Space Agency (ESA)–Japan Aerospace Exploration Agency (JAXA) Earth Clouds, Aerosol and Radiation Explorer (EarthCARE) satellite mission, scheduled for launch in 2018, will help to resolve these weaknesses by providing global profiles of cloud, aerosol, precipitation, and associated radiative properties inferred from a combination of measurements made by its collocated active and passive sensors. EarthCARE will improve our understanding of cloud and aerosol processes by extending the invaluable dataset acquired by the A-Train satellites CloudSat, Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO), and Aqua. Specifically, EarthCARE’s cloud profiling radar, with 7 dB more sensitivity than CloudSat, will detect more thin clouds and its Doppler capability will provide novel information on convection, precipitating ice particle, and raindrop fall speeds. EarthCARE’s 355-nm high-spectral-resolution lidar will measure directly and accurately cloud and aerosol extinction and optical depth. Combining this with backscatter and polarization information should lead to an unprecedented ability to identify aerosol type. The multispectral imager will provide a context for, and the ability to construct, the cloud and aerosol distribution in 3D domains around the narrow 2D retrieved cross section. The consistency of the retrievals will be assessed to within a target of ±10 W m–2 on the (10 km)2 scale by comparing the multiview broadband radiometer observations to the top-of-atmosphere fluxes estimated by 3D radiative transfer models acting on retrieved 3D domains.
Resumo:
The most damaging winds in a severe extratropical cyclone often occur just ahead of the evaporating ends of cloud filaments emanating from the so-called cloud head. These winds are associated with low-level jets (LLJs), sometimes occurring just above the boundary layer. The question then arises as to how the high momentum is transferred to the surface. An opportunity to address this question arose when the severe ‘St Jude's Day’ windstorm travelled across southern England on 28 October 2013. We have carried out a mesoanalysis of a network of 1 min resolution automatic weather stations and high-resolution Doppler radar scans from the sensitive S-band Chilbolton Advanced Meteorological Radar (CAMRa), along with satellite and radar network imagery and numerical weather prediction products. We show that, although the damaging winds occurred in a relatively dry region of the cyclone, there was evidence within the LLJ of abundant precipitation residues from shallow convective clouds that were evaporating in a localized region of descent. We find that pockets of high momentum were transported towards the surface by the few remaining actively precipitating convective clouds within the LLJ and also by precipitation-free convection in the boundary layer that was able to entrain evaporatively cooled air from the LLJ. The boundary-layer convection was organized in along-wind rolls separated by 500 to about 3000 m, the spacing varying according to the vertical extent of the convection. The spacing was greatest where the strongest winds penetrated to the surface. A run with a medium-resolution version of the Weather Research and Forecasting (WRF) model was able to reproduce the properties of the observed LLJ. It confirmed the LLJ to be a sting jet, which descended over the leading edge of a weaker cold-conveyor-belt jet.
Resumo:
The Madden-Julian Oscillation (MJO) is the dominant mode of intraseasonal variability in the Trop- ics. It can be characterised as a planetary-scale coupling between the atmospheric circulation and organised deep convection that propagates east through the equatorial Indo-Pacific region. The MJO interacts with weather and climate systems on a near-global scale and is a crucial source of predictability for weather forecasts on medium to seasonal timescales. Despite its global signifi- cance, accurately representing the MJO in numerical weather prediction (NWP) and climate models remains a challenge. This thesis focuses on the representation of the MJO in the Integrated Forecasting System (IFS) at the European Centre for Medium-Range Weather Forecasting (ECMWF), a state-of-the-art NWP model. Recent modifications to the model physics in Cycle 32r3 (Cy32r3) of the IFS led to ad- vances in the simulation of the MJO; for the first time the observed amplitude of the MJO was maintained throughout the integration period. A set of hindcast experiments, which differ only in their formulation of convection, have been performed between May 2008 and April 2009 to asses the sensitivity of MJO simulation in the IFS to the Cy32r3 convective parameterization. Unique to this thesis is the attribution of the advances in MJO simulation in Cy32r3 to the mod- ified convective parameterization, specifically, the relative-humidity-dependent formulation for or- ganised deep entrainment. Increasing the sensitivity of the deep convection scheme to environmen- tal moisture is shown to modify the relationship between precipitation and moisture in the model. Through dry-air entrainment, convective plumes ascending in low-humidity environments terminate lower in the atmosphere. As a result, there is an increase in the occurrence of cumulus congestus, which acts to moisten the mid-troposphere. Due to the modified precipitation-moisture relationship more moisture is able to build up which effectively preconditions the tropical atmosphere for the transition to deep convection. Results from this thesis suggest that a tropospheric moisture control on convection is key to simulating the interaction between the physics and large-scale circulation associated with the MJO.
Resumo:
Cool materials are characterized by high solar reflectance and high thermal emittance; when applied to the external surface of a roof, they make it possible to limit the amount of solar irradiance absorbed by the roof, and to increase the rate of heat flux emitted by irradiation to the environment, especially during nighttime. However, a roof also releases heat by convection on its external surface; this mechanism is not negligible, and an incorrect evaluation of its entity might introduce significant inaccuracy in the assessment of the thermal performance of a cool roof, in terms of surface temperature and rate of heat flux transferred to the indoors. This issue is particularly relevant in numerical simulations, which are essential in the design stage, therefore it deserves adequate attention. In the present paper, a review of the most common algorithms used for the calculation of the convective heat transfer coefficient due to wind on horizontal building surfaces is presented. Then, with reference to a case study in Italy, the simulated results are compared to the outcomes of a measurement campaign. Hence, the most appropriate algorithms for the convective coefficient are identified, and the errors deriving by an incorrect selection of this coefficient are discussed.