397 resultados para Mesoscale modelling
Resumo:
Government targets for CO2 reductions are being progressively tightened, the Climate Change Act set the UK target as an 80% reduction by 2050 on 1990 figures. The residential sector accounts for about 30% of emissions. This paper discusses current modelling techniques in the residential sector: principally top-down and bottom-up. Top-down models work on a macro-economic basis and can be used to consider large scale economic changes; bottom-up models are detail rich to model technological changes. Bottom-up models demonstrate what is technically possible. However, there are differences between the technical potential and what is likely given the limited economic rationality of the typical householder. This paper recommends research to better understand individuals’ behaviour. Such research needs to include actual choices, stated preferences and opinion research to allow a detailed understanding of the individual end user. This increased understanding can then be used in an agent based model (ABM). In an ABM, agents are used to model real world actors and can be given a rule set intended to emulate the actions and behaviours of real people. This can help in understanding how new technologies diffuse. In this way a degree of micro-economic realism can be added to domestic carbon modelling. Such a model should then be of use for both forward projections of CO2 and to analyse the cost effectiveness of various policy measures.
Resumo:
Determination of the local structure of a polymer glass by scattering methods is complex due to the number of spatial and orientational correlations, both from within the polymer chain (intrachain) and between neighbouring chains (interchain), from which the scattering arises. Recently considerable advances have been made in the structural analysis of relatively simple polymers such as poly(ethylene) through the use of broad Q neutron scattering data tightly coupled to atomistic modelling procedures. This paper presents the results of an investigation into the use of these procedures for the analysis of the local structure of a-PMMA which is chemically more complex with a much greater number of intrachain structural parameters. We have utilised high quality neutron scattering data obtained using SANDALS at ISIS coupled with computer models representing both the single chain and bulk polymer system. Several different modelling approaches have been explored which encompass such techniques as Reverse Monte Carlo refinement and energy minimisation and their relative merits and successes are discussed. These different approaches highlight structural parameters which any realistic model of glassy atactic PMMA must replicate.
Resumo:
Data assimilation is predominantly used for state estimation; combining observational data with model predictions to produce an updated model state that most accurately approximates the true system state whilst keeping the model parameters fixed. This updated model state is then used to initiate the next model forecast. Even with perfect initial data, inaccurate model parameters will lead to the growth of prediction errors. To generate reliable forecasts we need good estimates of both the current system state and the model parameters. This paper presents research into data assimilation methods for morphodynamic model state and parameter estimation. First, we focus on state estimation and describe implementation of a three dimensional variational(3D-Var) data assimilation scheme in a simple 2D morphodynamic model of Morecambe Bay, UK. The assimilation of observations of bathymetry derived from SAR satellite imagery and a ship-borne survey is shown to significantly improve the predictive capability of the model over a 2 year run. Here, the model parameters are set by manual calibration; this is laborious and is found to produce different parameter values depending on the type and coverage of the validation dataset. The second part of this paper considers the problem of model parameter estimation in more detail. We explain how, by employing the technique of state augmentation, it is possible to use data assimilation to estimate uncertain model parameters concurrently with the model state. This approach removes inefficiencies associated with manual calibration and enables more effective use of observational data. We outline the development of a novel hybrid sequential 3D-Var data assimilation algorithm for joint state-parameter estimation and demonstrate its efficacy using an idealised 1D sediment transport model. The results of this study are extremely positive and suggest that there is great potential for the use of data assimilation-based state-parameter estimation in coastal morphodynamic modelling.
Resumo:
Johne's disease in cattle is a contagious wasting disease caused by Mycobacterium avium subspecies paratuberculosis (MAP). Johne's infection is characterised by a long subclinical phase and can therefore go undetected for long periods of time during which substantial production losses can occur. The protracted nature of Johne's infection therefore presents a challenge for both veterinarians and farmers when discussing control options due to a paucity of information and limited test performance when screening for the disease. The objectives were to model Johne's control decisions in suckler beef cattle using a decision support approach, thus implying equal focus on ‘end user’ (veterinarian) participation whilst still focusing on the technical disease modelling aspects during the decision support model development. The model shows how Johne's disease is likely to affect a herd over time both in terms of physical and financial impacts. In addition, the model simulates the effect on production from two different Johne's control strategies; herd management measures and test and cull measures. The article also provides and discusses results from a sensitivity analysis to assess the effects on production from improving the currently available test performance. Output from running the model shows that a combination of management improvements to reduce routes of infection and testing and culling to remove infected and infectious animals is likely to be the least-cost control strategy.
Resistance as a factor in environmental exposure of anticoagulant rodenticides: a modelling approach
Resumo:
Anticoagulant rodenticide (AR) resistance in Norway rat populations has been a problem for fifty years, however its impact on non-target species, particularly predatory and scavenging animals has received little attention. Field trials were conducted on farms in Germany and England where resistance to anticoagulant rodenticides had been confirmed. Resistance is conferred by different mutations of the VKORC1 gene in each of these regions: tyrosine139cysteine in Germany and leucine120glutamine in England. A modelling approach was used to study the transference of the anticoagulants into the environment during treatments for Norway rat control. Baiting with brodifacoum resulted in lower levels of AR entering the food chain via the rats and lower numbers of live rats carrying residues during and after the trials due to its lower application rate and efficacy against resistant rats. Bromadiolone and difenacoum resulted in markedly higher levels of AR uptake into the rat population and larger numbers of live rats carrying residues during the trials and for long periods after the baiting period. Neither bromadiolone nor difenacoum provided full control on any of the treated farms. In resistant areas where ineffective compounds are used there is the potential for higher levels of AR exposure to non-target animals, particularly predators of rats and scavengers of rat carcasses. Thus, resistance influences the total amount of AR available to non-targets and should be considered when dealing with rat infestations, as resistance-breakers may present a lower risk to wildlife.
Resumo:
In recent years, various efforts have been made in air traffic control (ATC) to maintain traffic safety and efficiency in the face of increasing air traffic demands. ATC is a complex process that depends to a large degree on human capabilities, and so understanding how controllers carry out their tasks is an important issue in the design and development of ATC systems. In particular, the human factor is considered to be a serious problem in ATC safety and has been identified as a causal factor in both major and minor incidents. There is, therefore, a need to analyse the mechanisms by which errors occur due to complex factors and to develop systems that can deal with these errors. From the cognitive process perspective, it is essential that system developers have an understanding of the more complex working processes that involve the cooperative work of multiple controllers. Distributed cognition is a methodological framework for analysing cognitive processes that span multiple actors mediated by technology. In this research, we attempt to analyse and model interactions that take place in en route ATC systems based on distributed cognition. We examine the functional problems in an ATC system from a human factors perspective, and conclude by identifying certain measures by which to address these problems. This research focuses on the analysis of air traffic controllers' tasks for en route ATC and modelling controllers' cognitive processes.
Resumo:
Producing projections of future crop yields requires careful thought about the appropriate use of atmosphere-ocean global climate model (AOGCM) simulations. Here we describe and demonstrate multiple methods for ‘calibrating’ climate projections using an ensemble of AOGCM simulations in a ‘perfect sibling’ framework. Crucially, this type of analysis assesses the ability of each calibration methodology to produce reliable estimates of future climate, which is not possible just using historical observations. This type of approach could be more widely adopted for assessing calibration methodologies for crop modelling. The calibration methods assessed include the commonly used ‘delta’ (change factor) and ‘nudging’ (bias correction) approaches. We focus on daily maximum temperature in summer over Europe for this idealised case study, but the methods can be generalised to other variables and other regions. The calibration methods, which are relatively easy to implement given appropriate observations, produce more robust projections of future daily maximum temperatures and heat stress than using raw model output. The choice over which calibration method to use will likely depend on the situation, but change factor approaches tend to perform best in our examples. Finally, we demonstrate that the uncertainty due to the choice of calibration methodology is a significant contributor to the total uncertainty in future climate projections for impact studies. We conclude that utilising a variety of calibration methods on output from a wide range of AOGCMs is essential to produce climate data that will ensure robust and reliable crop yield projections.
Resumo:
Successful quantitative precipitation forecasts under convectively unstable conditions depend on the ability of the model to capture the location, timing and intensity of convection. Ensemble forecasts of two mesoscale convective outbreaks over the UK are examined with a view to understanding the nature and extent of their predictability. In addition to a control forecast, twelve ensemble members are run for each case with the same boundary conditions but with perturbations added to the boundary layer. The intention is to introduce perturbations of appropriate magnitude and scale so that the large-scale behaviour of the simulations is not changed. In one case, convection is in statistical equilibrium with the large-scale flow. This places a constraint on the total precipitation, but the location and intensity of individual storms varied. In contrast, the other case was characterised by a large-scale capping inversion. As a result, the location of individual storms was fixed, but their intensities and the total precipitation varied strongly. The ensemble shows case-to-case variability in the nature of predictability of convection in a mesoscale model, and provides additional useful information for quantitative precipitation forecasting.