361 resultados para Forecasts


Relevância:

10.00% 10.00%

Publicador:

Resumo:

There has been a significant increase in the skill and resolution of numerical weather prediction models (NWPs) in recent decades, extending the time scales of useful weather predictions. The land-surface models (LSMs) of NWPs are often employed in hydrological applications, which raises the question of how hydrologically representative LSMs really are. In this paper, precipitation (P), evaporation (E) and runoff (R) from the European Centre for Medium-Range Weather Forecasts (ECMWF) global models were evaluated against observational products. The forecasts differ substantially from observed data for key hydrological variables. In addition, imbalanced surface water budgets, mostly caused by data assimilation, were found on both global (P-E) and basin scales (P-E-R), with the latter being more important. Modeled surface fluxes should be used with care in hydrological applications and further improvement in LSMs in terms of process descriptions, resolution and estimation of uncertainties is needed to accurately describe the land-surface water budgets.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper proposes and tests a new framework for weighting recursive out-of-sample prediction errors according to their corresponding levels of in-sample estimation uncertainty. In essence, we show how to use the maximum possible amount of information from the sample in the evaluation of the prediction accuracy, by commencing the forecasts at the earliest opportunity and weighting the prediction errors. Via a Monte Carlo study, we demonstrate that the proposed framework selects the correct model from a set of candidate models considerably more often than the existing standard approach when only a small sample is available. We also show that the proposed weighting approaches result in tests of equal predictive accuracy that have much better sizes than the standard approach. An application to an exchange rate dataset highlights relevant differences in the results of tests of predictive accuracy based on the standard approach versus the framework proposed in this paper.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Application of the Bernhardt et al. (Journal of Financial Economics 2006; 80(3): 657–675) test of herding to the calendar-year annual output growth and inflation forecasts suggests forecasters tend to exaggerate their differences, except at the shortest horizon, when they tend to herd. We consider whether these types of behaviour can help to explain the puzzle that professional forecasters sometimes make point predictions and histogram forecasts which are mutually inconsistent.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Weather, climate, water and related environmental conditions, including air quality, all have profound effects on cities. A growing importance is being attached to understanding and predicting atmospheric conditions and their interactions with other components of the Earth System in cities, at multiple scales. We highlight the need for: (1) development of high-resolution coupled environmental prediction models that include realistic city-specific processes, boundary conditions and fluxes; (2) enhanced observational systems to support (force, constrain, evaluate) these models to provide high quality forecasts for new urban services; (3) provision of meteorological and related environmental variables to aid protection of human health and the environment; (4) new targeted and customized delivery platforms using modern communication techniques, developed with users to ensure that services, advice and warnings result in appropriate action; and (5) development of new skill and capacity to make best use of technologies to deliver new services in complex, challenging and evolving city environments. We highlight the importance of a coordinated and strategic approach that draws on, but does not replicate, past work to maximize benefits to stakeholders.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The incorporation of numerical weather predictions (NWP) into a flood warning system can increase forecast lead times from a few hours to a few days. A single NWP forecast from a single forecast centre, however, is insufficient as it involves considerable non-predictable uncertainties and can lead to a high number of false or missed warnings. Weather forecasts using multiple NWPs from various weather centres implemented on catchment hydrology can provide significantly improved early flood warning. The availability of global ensemble weather prediction systems through the ‘THORPEX Interactive Grand Global Ensemble’ (TIGGE) offers a new opportunity for the development of state-of-the-art early flood forecasting systems. This paper presents a case study using the TIGGE database for flood warning on a meso-scale catchment (4062 km2) located in the Midlands region of England. For the first time, a research attempt is made to set up a coupled atmospheric-hydrologic-hydraulic cascade system driven by the TIGGE ensemble forecasts. A probabilistic discharge and flood inundation forecast is provided as the end product to study the potential benefits of using the TIGGE database. The study shows that precipitation input uncertainties dominate and propagate through the cascade chain. The current NWPs fall short of representing the spatial precipitation variability on such a comparatively small catchment, which indicates need to improve NWPs resolution and/or disaggregating techniques to narrow down the spatial gap between meteorology and hydrology. The spread of discharge forecasts varies from centre to centre, but it is generally large and implies a significant level of uncertainties. Nevertheless, the results show the TIGGE database is a promising tool to forecast flood inundation, comparable with that driven by raingauge observation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Clouds, Aerosol, and Precipitation in the Marine Boundary Layer (CAP-MBL) deployment at Graciosa Island in the Azores generated a 21-month (April 2009–December 2010) comprehensive dataset documenting clouds, aerosols, and precipitation using the Atmospheric Radiation Measurement Program (ARM) Mobile Facility (AMF). The scientific aim of the deployment is to gain improved understanding of the interactions of clouds, aerosols, and precipitation in the marine boundary layer. Graciosa Island straddles the boundary between the subtropics and midlatitudes in the northeast Atlantic Ocean and consequently experiences a great diversity of meteorological and cloudiness conditions. Low clouds are the dominant cloud type, with stratocumulus and cumulus occurring regularly. Approximately half of all clouds contained precipitation detectable as radar echoes below the cloud base. Radar and satellite observations show that clouds with tops from 1 to 11 km contribute more or less equally to surface-measured precipitation at Graciosa. A wide range of aerosol conditions was sampled during the deployment consistent with the diversity of sources as indicated by back-trajectory analysis. Preliminary findings suggest important two-way interactions between aerosols and clouds at Graciosa, with aerosols affecting light precipitation and cloud radiative properties while being controlled in part by precipitation scavenging. The data from Graciosa are being compared with short-range forecasts made with a variety of models. A pilot analysis with two climate and two weather forecast models shows that they reproduce the observed time-varying vertical structure of lower-tropospheric cloud fairly well but the cloud-nucleating aerosol concentrations less well. The Graciosa site has been chosen to be a permanent fixed ARM site that became operational in October 2013.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The North Atlantic Ocean subpolar gyre (NA SPG) is an important region for initialising decadal climate forecasts. Climate model simulations and palaeo climate reconstructions have indicated that this region could also exhibit large, internally generated variability on decadal timescales. Understanding these modes of variability, their consistency across models, and the conditions in which they exist, is clearly important for improving the skill of decadal predictions — particularly when these predictions are made with the same underlying climate models. Here we describe and analyse a mode of internal variability in the NA SPG in a state-of-the-art, high resolution, coupled climate model. This mode has a period of 17 years and explains 15–30% of the annual variance in related ocean indices. It arises due to the advection of heat content anomalies around the NA SPG. Anomalous circulation drives the variability in the southern half of the NA SPG, whilst mean circulation and anomalous temperatures are important in the northern half. A negative feedback between Labrador Sea temperatures/densities and those in the North Atlantic Current is identified, which allows for the phase reversal. The atmosphere is found to act as a positive feedback on to this mode via the North Atlantic Oscillation which itself exhibits a spectral peak at 17 years. Decadal ocean density changes associated with this mode are driven by variations in temperature, rather than salinity — a point which models often disagree on and which we suggest may affect the veracity of the underlying assumptions of anomaly-assimilating decadal prediction methodologies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The evaluation of forecast performance plays a central role both in the interpretation and use of forecast systems and in their development. Different evaluation measures (scores) are available, often quantifying different characteristics of forecast performance. The properties of several proper scores for probabilistic forecast evaluation are contrasted and then used to interpret decadal probability hindcasts of global mean temperature. The Continuous Ranked Probability Score (CRPS), Proper Linear (PL) score, and IJ Good’s logarithmic score (also referred to as Ignorance) are compared; although information from all three may be useful, the logarithmic score has an immediate interpretation and is not insensitive to forecast busts. Neither CRPS nor PL is local; this is shown to produce counter intuitive evaluations by CRPS. Benchmark forecasts from empirical models like Dynamic Climatology place the scores in context. Comparing scores for forecast systems based on physical models (in this case HadCM3, from the CMIP5 decadal archive) against such benchmarks is more informative than internal comparison systems based on similar physical simulation models with each other. It is shown that a forecast system based on HadCM3 out performs Dynamic Climatology in decadal global mean temperature hindcasts; Dynamic Climatology previously outperformed a forecast system based upon HadGEM2 and reasons for these results are suggested. Forecasts of aggregate data (5-year means of global mean temperature) are, of course, narrower than forecasts of annual averages due to the suppression of variance; while the average “distance” between the forecasts and a target may be expected to decrease, little if any discernible improvement in probabilistic skill is achieved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The statistical properties and skill in predictions of objectively identified and tracked cyclonic features (frontal waves and cyclones) are examined in MOGREPS-15, the global 15-day version of the Met Office Global and Regional Ensemble Prediction System (MOGREPS). The number density of cyclonic features is found to decline with increasing lead-time, with analysis fields containing weak features which are not sustained past the first day of the forecast. This loss of cyclonic features is associated with a decline in area averaged enstrophy with increasing lead time. Both feature number density and area averaged enstrophy saturate by around 7 days into the forecast. It is found that the feature number density and area averaged enstrophy of forecasts produced using model versions that include stochastic energy backscatter saturate at higher values than forecasts produced without stochastic physics. The ability of MOGREPS-15 to predict the locations of cyclonic features of different strengths is evaluated at different spatial scales by examining the Brier Skill (relative to the analysis climatology) of strike probability forecasts: the probability that a cyclonic feature center is located within a specified radius. The radius at which skill is maximised increases with lead time from 650km at 12h to 950km at 7 days. The skill is greatest for the most intense features. Forecast skill remains above zero at these scales out to 14 days for the most intense cyclonic features, but only out to 8 days when all features are included irrespective of intensity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Methods to explicitly represent uncertainties in weather and climate models have been developed and refined over the past decade, and have reduced biases and improved forecast skill when implemented in the atmospheric component of models. These methods have not yet been applied to the land surface component of models. Since the land surface is strongly coupled to the atmospheric state at certain times and in certain places (such as the European summer of 2003), improvements in the representation of land surface uncertainty may potentially lead to improvements in atmospheric forecasts for such events. Here we analyse seasonal retrospective forecasts for 1981–2012 performed with the European Centre for Medium-Range Weather Forecasts’ (ECMWF) coupled ensemble forecast model. We consider two methods of incorporating uncertainty into the land surface model (H-TESSEL): stochastic perturbation of tendencies, and static perturbation of key soil parameters. We find that the perturbed parameter approach considerably improves the forecast of extreme air temperature for summer 2003, through better representation of negative soil moisture anomalies and upward sensible heat flux. Averaged across all the reforecasts the perturbed parameter experiment shows relatively little impact on the mean bias, suggesting perturbations of at least this magnitude can be applied to the land surface without any degradation of model climate. There is also little impact on skill averaged across all reforecasts and some evidence of overdispersion for soil moisture. The stochastic tendency experiments show a large overdispersion for the soil temperature fields, indicating that the perturbation here is too strong. There is also some indication that the forecast of the 2003 warm event is improved for the stochastic experiments, however the improvement is not as large as observed for the perturbed parameter experiment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Using lessons from idealised predictability experiments, we discuss some issues and perspectives on the design of operational seasonal to inter-annual Arctic sea-ice prediction systems. We first review the opportunities to use a hierarchy of different types of experiment to learn about the predictability of Arctic climate. We also examine key issues for ensemble system design, such as: measuring skill, the role of ensemble size and generation of ensemble members. When assessing the potential skill of a set of prediction experiments, using more than one metric is essential as different choices can significantly alter conclusions about the presence or lack of skill. We find that increasing both the number of hindcasts and ensemble size is important for reliably assessing the correlation and expected error in forecasts. For other metrics, such as dispersion, increasing ensemble size is most important. Probabilistic measures of skill can also provide useful information about the reliability of forecasts. In addition, various methods for generating the different ensemble members are tested. The range of techniques can produce surprisingly different ensemble spread characteristics. The lessons learnt should help inform the design of future operational prediction systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Between December 2010 and March 2013, volunteers for the Solar Stormwatch (SSW) Citizen Science project have identified and analyzed coronal mass ejections (CMEs) in the near real-time Solar Terrestrial Relations Observatory Heliospheric Imager observations, in order to make “Fearless Forecasts” of CME arrival times and speeds at Earth. Of the 60 predictions of Earth-directed CMEs, 20 resulted in an identifiable Interplanetary CME (ICME) at Earth within 1.5–6 days, with an average error in predicted transit time of 22 h, and average transit time of 82.3 h. The average error in predicting arrival speed is 151 km s−1, with an average arrival speed of 425km s−1. In the same time period, there were 44 CMEs for which there are no corresponding SSW predictions, and there were 600 days on which there was neither a CME predicted nor observed. A number of metrics show that the SSW predictions do have useful forecast skill; however, there is still much room for improvement. We investigate potential improvements by using SSW inputs in three models of ICME propagation: two of constant acceleration and one of aerodynamic drag. We find that taking account of interplanetary acceleration can improve the average errors of transit time to 19 h and arrival speed to 77 km s−1.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effects of data uncertainty on real-time decision-making can be reduced by predicting early revisions to US GDP growth. We show that survey forecasts efficiently anticipate the first-revised estimate of GDP, but that forecasting models incorporating monthly economic indicators and daily equity returns provide superior forecasts of the second-revised estimate. We consider the implications of these findings for analyses of the impact of surprises in GDP revision announcements on equity markets, and for analyses of the impact of anticipated future revisions on announcement-day returns.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose – This paper aims to make a comparison, different from existing literature solely focusing on voluntary earnings forecasts and ex post earnings surprise, between the effects of mandatory earnings surprise warnings and voluntary information disclosure issued by management teams on financial analysts in terms of the number of followings and the accuracy of earnings forecasts. Design/methodology/approach – This paper uses panel data analysis with fixed effects on data collected from Chinese public firms between 2006 and 2010. It uses an exogenous regulation enforcement to minimise the endogeneity problem. Findings – This paper finds that financial analysts are less likely to follow firms which mandatorily issue earnings surprise warnings ex ante than those voluntarily issue earnings forecasts. Moreover, ex post, they issue less accurate and more dispersed forecasts on former firms. The results support Brown et al.’s (2009) finding in the USA and suggest that the earnings surprise warnings affect information asymmetries. Practical implications – This paper justifies the mandatory earnings surprise warnings policy issued by Chinese Securities Regulatory Commission in 2006. Originality/value – Mandatory earnings surprise is a unique practical regulation for publicly listed firms in China. This paper, for the first time, provides empirical evaluation on the effectiveness of a mandatory information disclosure policy in China. Consistent with existing literature on information disclosure by public firms in other countries, this paper finds that, in China, voluntary information disclosure captures more private information than mandatory information disclosure on corporate earnings ability.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper we assess opinion polls, prediction markets, expert opinion and statistical modelling over a large number of US elections in order to determine which perform better in terms of forecasting outcomes. In line with existing literature, we bias-correct opinion polls. We consider accuracy, bias and precision over different time horizons before an election, and we conclude that prediction markets appear to provide the most precise forecasts and are similar in terms of bias to opinion polls. We find that our statistical model struggles to provide competitive forecasts, while expert opinion appears to be of value. Finally we note that the forecast horizon matters; whereas prediction market forecasts tend to improve the nearer an election is, opinion polls appear to perform worse, while expert opinion performs consistently throughout. We thus contribute to the growing literature comparing election forecasts of polls and prediction markets.