308 resultados para pp-Waves


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new formal approach for representation of polarization states of coherent and partially coherent electromagnetic plane waves is presented. Its basis is a purely geometric construction for the normalised complex-analytic coherent wave as a generating line in the sphere of wave directions, and whose Stokes vector is determined by the intersection with the conjugate generating line. The Poincare sphere is now located in physical space, simply a coordination of the wave sphere, its axis aligned with the wave vector. Algebraically, the generators representing coherent states are represented by spinors, and this is made consistent with the spinor-tensor representation of electromagnetic theory by means of an explicit reference spinor we call the phase flag. As a faithful unified geometric representation, the new model provides improved formal tools for resolving many of the geometric difficulties and ambiguities that arise in the traditional formalism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The combined influences of the westerly phase of the quasi-biennial oscillation (QBO-W) and solar maximum (Smax) conditions on the Northern Hemisphere extratropical winter circulation are investigated using reanalysis data and Center for Climate System Research/National Institute for Environmental Studies chemistry climate model (CCM) simulations. The composite analysis for the reanalysis data indicates strengthened polar vortex in December followed by weakened polar vortex in February–March for QBO-W during Smax (QBO-W/Smax) conditions. This relationship need not be specific to QBO-W/Smax conditions but may just require strengthened vortex in December, which is more likely under QBO-W/Smax. Both the reanalysis data and CCM simulations suggest that dynamical processes of planetary wave propagation and meridional circulation related to QBO-W around polar vortex in December are similar in character to those related to Smax; furthermore, both processes may work in concert to maintain stronger vortex during QBO-W/Smax. In the reanalysis data, the strengthened polar vortex in December is associated with the development of north–south dipole tropospheric anomaly in the Atlantic sector similar to the North Atlantic oscillation (NAO) during December–January. The structure of the north–south dipole anomaly has zonal wavenumber 1 (WN1) component, where the longitude of anomalous ridge overlaps with that of climatological ridge in the North Atlantic in January. This implies amplification of the WN1 wave and results in the enhancement of the upward WN1 propagation from troposphere into stratosphere in January, leading to the weakened polar vortex in February–March. Although WN2 waves do not play a direct role in forcing the stratospheric vortex evolution, their tropospheric response to QBO-W/Smax conditions appears to be related to the maintenance of the NAO-like anomaly in the high-latitude troposphere in January. These results may provide a possible explanation for the mechanisms underlying the seasonal evolution of wintertime polar vortex anomalies during QBO-W/Smax conditions and the role of troposphere in this evolution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Internal gravity waves are generated as adjustment radiation whenever a sudden change in forcing causes the atmosphere to depart from its large-scale balanced state. Such a forcing anomaly occurs during a solar eclipse, when the Moon’s shadow cools part of the Earth’s surface. The resulting atmospheric gravity waves are associated with pressure and temperature perturbations, which in principle are detectable both at the surface and aloft. In this study, surface pressure and temperature data from two UK sites at Reading and Lerwick are analysed for eclipse-driven gravity-wave perturbations during the 20 March 2015 solar eclipse over north-west Europe. Radiosonde wind data from the same two sites are also analysed using a moving parcel analysis method, to determine the periodicities of the waves aloft. On this occasion, the perturbations both at the surface and aloft are found not to be confidently attributable to eclipse-driven gravity waves. We conclude that the complex synoptic weather conditions over the UK at the time of this particular eclipse helped to mask any eclipse-driven gravity waves.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A recent intercomparison exercise proposed by the Working Group for Numerical Experimentation (WGNE) revealed that the parameterized, or unresolved, surface stress in weather forecast models is highly model-dependent, especially over orography. Models of comparable resolution differ over land by as much as 20% in zonal mean total subgrid surface stress (Ttot). The way Ttot is partitioned between the different parameterizations is also model-dependent. In this study, we simulated in a particular model an increase in Ttot comparable with the spread found in the WGNE intercomparison. This increase was simulated in two ways, namely by increasing independently the contributions to Ttot of the turbulent orographic form drag scheme (TOFD) and of the orographic low-level blocking scheme (BLOCK). Increasing the parameterized orographic drag leads to significant changes in surface pressure, zonal wind and temperature in the Northern Hemisphere during winter both in 10 day weather forecasts and in seasonal integrations. However, the magnitude of these changes in circulation strongly depends on which scheme is modified. In 10 day forecasts, stronger changes are found when the TOFD stress is increased, while on seasonal time scales the effects are of comparable magnitude, although different in detail. At these time scales, the BLOCK scheme affects the lower stratosphere winds through changes in the resolved planetary waves which are associated with surface impacts, while the TOFD effects are mostly limited to the lower troposphere. The partitioning of Ttot between the two schemes appears to play an important role at all time scales.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The horizontal gradient of potential vorticity (PV) across the tropopause typically declines with lead time in global numerical weather forecasts and tends towards a steady value dependent on model resolution. This paper examines how spreading the tropopause PV contrast over a broader frontal zone affects the propagation of Rossby waves. The approach taken is to analyse Rossby waves on a PV front of finite width in a simple single-layer model. The dispersion relation for linear Rossby waves on a PV front of infinitesimal width is well known; here an approximate correction is derived for the case of a finite width front, valid in the limit that the front is narrow compared to the zonal wavelength. Broadening the front causes a decrease in both the jet speed and the ability of waves to propagate upstream. The contribution of these changes to Rossby wave phase speeds cancel at leading order. At second order the decrease in jet speed dominates, meaning phase speeds are slower on broader PV fronts. This asymptotic phase speed result is shown to hold for a wide class of single-layer dynamics with a varying range of PV inversion operators. The phase speed dependence on frontal width is verified by numerical simulations and also shown to be robust at finite wave amplitude, and estimates are made for the error in Rossby wave propagation speeds due to the PV gradient error present in numerical weather forecast models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As the climate warms, heat waves (HW) are projected to be more intense and to last longer, with serious implications for public health. Urban residents face higher health risks because urban heat islands (UHIs) exacerbate HW conditions. One strategy to mitigate negative impacts of urban thermal stress is the installation of green roofs (GRs) given their evaporative cooling effect. However, the effectiveness of GRs and the mechanisms by which they have an effect at the scale of entire cities are still largely unknown. The Greater Beijing Region (GBR) is modeled for a HW scenario with the Weather Research and Forecasting (WRF) model coupled with a state-of-the-art urban canopy model (PUCM) to examine the effectiveness of GRs. The results suggest GR would decrease near-surface air temperature (ΔT2max = 2.5 K) and wind speed (ΔUV10max = 1.0 m s-1) but increase atmospheric humidity (ΔQ2max = 1.3 g kg-1). GRs are simulated to lessen the overall thermal stress as indicated by apparent temperature (ΔAT2max = 1.7 °C). The modifications by GRs scale almost linearly with the fraction of the surface they cover. Investigation of the surface-atmosphere interactions indicate that GRs with plentiful soil moisture dissipate more of the surface energy as latent heat flux and subsequently inhibit the development of the daytime planetary boundary layer (PBL). This causes the atmospheric heating through entrainment at the PBL top to be decreased. Additionally, urban GRs modify regional circulation regimes leading to decreased advective heating under HW.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The contrasting behaviour of westward-moving mixed Rossby-gravity (WMRG) and the first Rossby (R1) waves in El Niño (EN) and La Niña (LN) seasons is documented with a focus on the Northern Hemisphere winter. The eastward-moving variance in the upper troposphere is dominated by WMRG and R1 structures that appear to be Doppler-shifted by the flow and are referred to as WMRG-E and R1-E. In the East Pacific and Atlantic the years with stronger equatorial westerly winds have the stronger WMRG and WMRG- E. In the East Pacific, R1 is also a maximum in LN. However, R1-E exhibits an eastward-shift between LN and EN. The changes with ENSO phase provide a test-bed for the understanding of these waves. In the East Pacific and Atlantic, the stronger WMRG-E and WMRG with stronger westerlies are in accord with the dispersion relation with simple Doppler-shifting by the zonal flow. The possible existence of free waves can also explain stronger R1 in EN in the Eastern Hemisphere. 1-D free wave propagation theory based on wave activity conservation is also important for R1. However, this theory is unable to explain the amplitude maxima for other waves observed in the strong equatorial westerly regions in the Western Hemisphere, and certainly not their ENSO-related variation. The forcing of equatorial waves by higher latitude wave activity and its variation with ENSO phase is therefore examined. Propagation of extratropical eastward-moving Rossby wave activity through the westerly ducts into the equatorial region where it triggers WMRG-E is favoured in the stronger westerlies, in LN in the East Pacific and EN in the Atlantic. It is also found that WMRG is forced by Southern Hemisphere westward-moving wavetrains arching into the equatorial region where they are reflected. The most significant mechanism for both R1 and R1-E appear to be lateral forcing by subtropical wavetrains.