365 resultados para climate scenario
Resumo:
A low resolution coupled ocean-atmosphere general circulation model OAGCM is used to study the characteristics of the large scale ocean circulation and its climatic impacts in a series of global coupled aquaplanet experiments. Three configurations, designed to produce fundamentally different ocean circulation regimes, are considered. The first has no obstruction to zonal flow, the second contains a low barrier that blocks zonal flow in the ocean at all latitudes, creating a single enclosed basin, whilst the third contains a gap in the barrier to allow circumglobal flow at high southern latitudes. Warm greenhouse climates with a global average air surface temperature of around 27C result in all cases. Equator to pole temperature gradients are shallower than that of a current climate simulation. Whilst changes in the land configuration cause regional changes in temperature, winds and rainfall, heat transports within the system are little affected. Inhibition of all ocean transport on the aquaplanet leads to a reduction in global mean surface temperature of 8C, along with a sharpening of the meridional temperature gradient. This results from a reduction in global atmospheric water vapour content and an increase in tropical albedo, both of which act to reduce global surface temperatures. Fitting a simple radiative model to the atmospheric characteristics of the OAGCM solutions suggests that a simpler atmosphere model, with radiative parameters chosen a priori based on the changing surface configuration, would have produced qualitatively different results. This implies that studies with reduced complexity atmospheres need to be guided by more complex OAGCM results on a case by case basis.
Resumo:
An idealised Pangean configuration is integrated in a coupled ocean atmosphere general circulation model to investigate the form of the ocean circulation and its impacts on the large scale climate system. A vigorous, hemispherically symmetric overturning is found, driven by deep water formation at high latitudes. Whilst the peak mass transport is around 100Sv, a low vertical temperature gradient in the ocean means that the maximum heat transport is only 1.2PW. The geographical change in the coupled model is found to produce a global average warming of 2°C, despite an increase in global surface albedo. This occurs through changes in the atmospheric water vapour and cloud distributions. There is also reduction in the equator-pole temperature gradient, largely attributable to the same causes, avoiding the paradox of low meridional temperature gradients without increased polar heat transport.
Resumo:
Heat waves are expected to increase in frequency and magnitude with climate change. The first part of a study to produce projections of the effect of future climate change on heat-related mortality is presented. Separate city-specific empirical statistical models that quantify significant relationships between summer daily maximum temperature (T max) and daily heat-related deaths are constructed from historical data for six cities: Boston, Budapest, Dallas, Lisbon, London, and Sydney. ‘Threshold temperatures’ above which heat-related deaths begin to occur are identified. The results demonstrate significantly lower thresholds in ‘cooler’ cities exhibiting lower mean summer temperatures than in ‘warmer’ cities exhibiting higher mean summer temperatures. Analysis of individual ‘heat waves’ illustrates that a greater proportion of mortality is due to mortality displacement in cities with less sensitive temperature–mortality relationships than in those with more sensitive relationships, and that mortality displacement is no longer a feature more than 12 days after the end of the heat wave. Validation techniques through residual and correlation analyses of modelled and observed values and comparisons with other studies indicate that the observed temperature–mortality relationships are represented well by each of the models. The models can therefore be used with confidence to examine future heat-related deaths under various climate change scenarios for the respective cities (presented in Part 2).
Resumo:
This report forms part of a larger research programme on 'Reinterpreting the Urban-Rural Continuum', which conceptualises and investigates current knowledge and research gaps concerning 'the role that ecosystems services play in the livelihoods of the poor in regions undergoing rapid change'. The report aims to conduct a baseline appraisal of water-dependant ecosystem services, the roles they play within desakota livelihood systems and their potential sensitivity to climate change. The appraisal is conducted at three spatial scales: global, regional (four consortia areas), and meso scale (case studies within the four regions). At all three scales of analysis water resources form the interweaving theme because water provides a vital provisioning service for people, supports all other ecosystem processes and because water resources are forecast to be severely affected under climate change scenarios. This report, combined with an Endnote library of over 1100 scientific papers, provides an annotated bibliography of water-dependant ecosystem services, the roles they play within desakota livelihood systems and their potential sensitivity to climate change. After an introductory, section, Section 2 of the report defines water-related ecosystem services and how these are affected by human activities. Current knowledge and research gaps are then explored in relation to global scale climate and related hydrological changes (e.g. floods, droughts, flow regimes) (section 3). The report then discusses the impacts of climate changes on the ESPA regions, emphasising potential responses of biomes to the combined effects of climate change and human activities (particularly land use and management), and how these effects coupled with water store and flow regime manipulation by humans may affect the functioning of catchments and their ecosystem services (section 4). Finally, at the meso-scale, case studies are presented from within the ESPA regions to illustrate the close coupling of human activities and catchment performance in the context of environmental change (section 5). At the end of each section, research needs are identified and justified. These research needs are then amalgamated in section 6.
Resumo:
Solar outputs during the current solar minimum are setting record low values for the space age. Evidence is here reviewed that this is part of a decline in solar activity from a grand solar maximum and that the Sun has returned to a state that last prevailed in 1924. Recent research into what this means, and does not mean, for climate change is reviewed.
Resumo:
During the descent into the recent ‘exceptionally’ low solar minimum, observations have revealed a larger change in solar UV emissions than seen at the same phase of previous solar cycles. This is particularly true at wavelengths responsible for stratospheric ozone production and heating. This implies that ‘top-down’ solar modulation could be a larger factor in long-term tropospheric change than previously believed, many climate models allowing only for the ‘bottom-up’ effect of the less-variable visible and infrared solar emissions. We present evidence for long-term drift in solar UV irradiance, which is not found in its commonly used proxies. In addition, we find that both stratospheric and tropospheric winds and temperatures show stronger regional variations with those solar indices that do show long-term trends. A top-down climate effect that shows long-term drift (and may also be out of phase with the bottom-up solar forcing) would change the spatial response patterns and would mean that climate-chemistry models that have sufficient resolution in the stratosphere would become very important for making accurate regional/seasonal climate predictions. Our results also provide a potential explanation of persistent palaeoclimate results showing solar influence on regional or local climate indicators.
Resumo:
It has been shown previously that one member of the Met Office Hadley Centre single-parameter perturbed physics ensemble – the so-called "low entrainment parameter" member – has a much higher climate sensitivity than other individual parameter perturbations. Here we show that the concentration of stratospheric water vapour in this member is over three times higher than observations, and, more importantly for climate sensitivity, increases significantly when climate warms. The large surface temperature response of this ensemble member is more consistent with stratospheric humidity change, rather than upper tropospheric clouds as has been previously suggested. The direct relationship between the bias in the control state (elevated stratospheric humidity) and the cause of the high climate sensitivity (a further increase in stratospheric humidity) lends further doubt as to the realism of this particular integration. This, together with other evidence, lowers the likelihood that the climate system's physical sensitivity is significantly higher than the likely upper range quoted in the Intergovernmental Panel on Climate Change's Fourth Assessment Report.
Resumo:
In the Essence project a 17-member ensemble simulation of climate change in response to the SRES A1b scenario has been carried out using the ECHAM5/MPI-OM climate model. The relatively large size of the ensemble makes it possible to accurately investigate changes in extreme values of climate variables. Here we focus on the annual-maximum 2m-temperature and fit a Generalized Extreme Value (GEV) distribution to the simulated values and investigate the development of the parameters of this distribution. Over most land areas both the location and the scale parameter increase. Consequently the 100-year return values increase faster than the average temperatures. A comparison of simulated 100-year return values for the present climate with observations (station data and reanalysis) shows that the ECHAM5/MPI-OM model, as well as other models, overestimates extreme temperature values. After correcting for this bias, it still shows values in excess of 50°C in Australia, India, the Middle East, North Africa, the Sahel and equatorial and subtropical South America at the end of the century.
Resumo:
Solar electromagnetic radiation powers Earth’s climate system and, consequently, it is often naively assumed that changes in this solar output must be responsible for changes in Earth’s climate. However, the Sun is close to a blackbody radiator and so emits according to its surface temperature and the huge thermal time constant of the outer part of the Sun limits the variability in surface temperature and hence output. As a result, on all timescales of interest, changes in total power output are limited to small changes in effective surface temperature (associated with magnetic fields) and potential, although as yet undetected, solar radius variations. Larger variations are seen in the UV part of the spectrum which is emitted from the lower solar atmosphere (the chromosphere) and which influences Earth’s stratosphere. There is interest in“top-down” mechanisms whereby solar UV irradiance modulates stratospheric temperatures and winds which, in turn, may influence the underlying troposphere where Earth’s climate and weather reside. This contrasts with “bottom-up” effects in which the small total solar irradiance (dominated by the visible and near-IR) variations cause surface temperature changes which drive atmospheric circulations. In addition to these electromagnetic outputs, the Sun modulates energetic particle fluxes incident on the Earth. Solar Energetic Particles (SEP) are emitted by solar flares and from the shock fronts ahead of supersonic (and super-Alfvenic) ejections of material from the solar atmosphere. These SEPs enhance the destruction of polar stratospheric ozone which could be an additional form of top-down climate forcing. Even more energetic are Galactic Cosmic Rays (GCRs). These particles are not generated by the Sun, rather they originate at the shock fronts emanating from violent galactic events such as supernovae explosions; however, the expansion of the solar magnetic field into interplanetary space means that the Sun modulates the number of GCRs reaching Earth. These play a key role in enabling Earth’s global electric (thunderstorm) circuit and it has been proposed that they also modulate the formation of clouds. Both electromagnetic and corpuscular solar effects are known to vary over the solar magnetic cycle which is typically between 10 and 14 yrs in length (with an average close to 11 yrs). The solar magnetic field polarity at any one phase of one of these activity cycles is opposite to that at the same phase of the next cycle and this influences some phenomena, for example GCRs, which therefore show a 22 yr (“Hale”) cycle on average. Other phenomena, such as irradiance modulation, do not depend on the polarity of the magnetic field and so show only the basic 11-yr activity cycle. However, any effects on climate are much more significant for solar drifts over centennial timescales. This chapter discusses and evaluates potential effects on Earth’s climate system of variations in these solar inputs. Because of the great variety of proposed mechanisms, the wide range of timescales studied (from days to millennia) and the many debates (often triggered by the application of inadequate statistical methods), the literature on this subject is vast, complex, divergent and rapidly changing: consequently the number of references cited in this review is very large (yet still only a small fraction of the total).
Resumo:
We demonstrate that a new geomagnetic index of solar variability exhibits stronger correlations with atmospheric circulation variations than conventional measures. The circulation anomalies are particularly enhanced over the North Atlantic / Eurasian sector, where there are large changes in the occurrence of blocking and the winter mean surface temperature differs by several degrees between high- and low-solar terciles. The relationship is also simpler, being largely linear between high- and low-solar winters. While the circulation anomalies strongly resemble the North Atlantic Oscillation they also extend deeper into Eurasia, in a distinct signature which may be useful for the detection and attribution of observed changes and also the identification of dynamical mechanisms.
Resumo:
Understanding the influence of solar variability on the Earth’s climate requires knowledge of solar variability, solar-terrestrial interactions and the mechanisms determining the response of the Earth’s climate system. We provide a summary of our current understanding in each of these three areas. Observations and mechanisms for the Sun's variability are described, including solar irradiance variations on both decadal and centennial timescales and their relation to galactic cosmic rays. Corresponding observations of variations of the Earth’s climate on associated timescales are described, including variations in ozone, temperatures, winds, clouds, precipitation and regional modes of variability such as the monsoons and the North Atlantic Oscillation. A discussion of the available solar and climate proxies is provided. Mechanisms proposed to explain these climate observations are described, including the effects of variations in solar irradiance and of charged particles. Finally, the contribution of solar variations to recent observations of global climate change are discussed.