17 resultados para workflow scheduling


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Users’ requirements change drives an information system evolution. Consequently, such evolution affects those atomic services which provide functional operations from one state of their composition to another state of composition. A challenging issue associated with such evolution of the state of service composition is to ensure a resultant service composition remaining rational. This paper presents a method of Service Composition Atomic-Operation Set (SCAOS). SCAOS defines 2 classes of atomic operations and 13 kinds of basic service compositions to aid a state change process by using Workflow Net. The workflow net has algorithmic capabilities to compose the required services with rationality and maintain any changes to the services in a different composition also rational. This method can improve the adaptability to the ever changing business requirements of information systems in the dynamic environment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: In many experimental pipelines, clustering of multidimensional biological datasets is used to detect hidden structures in unlabelled input data. Taverna is a popular workflow management system that is used to design and execute scientific workflows and aid in silico experimentation. The availability of fast unsupervised methods for clustering and visualization in the Taverna platform is important to support a data-driven scientific discovery in complex and explorative bioinformatics applications. Results: This work presents a Taverna plugin, the Biological Data Interactive Clustering Explorer (BioDICE), that performs clustering of high-dimensional biological data and provides a nonlinear, topology preserving projection for the visualization of the input data and their similarities. The core algorithm in the BioDICE plugin is Fast Learning Self Organizing Map (FLSOM), which is an improved variant of the Self Organizing Map (SOM) algorithm. The plugin generates an interactive 2D map that allows the visual exploration of multidimensional data and the identification of groups of similar objects. The effectiveness of the plugin is demonstrated on a case study related to chemical compounds. Conclusions: The number and variety of available tools and its extensibility have made Taverna a popular choice for the development of scientific data workflows. This work presents a novel plugin, BioDICE, which adds a data-driven knowledge discovery component to Taverna. BioDICE provides an effective and powerful clustering tool, which can be adopted for the explorative analysis of biological datasets.