33 resultados para water-in-oil emulsion
Resumo:
Treated wastewater or reclaimed water is gaining recognition as a valuable water resource around the world. To assess why, where and how water reuse takes place in Jordan, semi-structured interviews were conducted with representatives of 29 key organisations in 2008. The analysis reveals that water scarcity is a key driver for water reuse. However, despite such recognition, reuse was described positively by only a small proportion of the interviewees (n = 6). Negative and neutral perceptions regarding reuse dominated and the research found that this was related to two underlying challenges: (i) the requirement for more intensive management when using reclaimed water compared with freshwater and (ii) concern over societal acceptance of water reuse. These factors were found to be associated with the risks posed to humans and their environments, combined with negative emotional and cultural responses to human waste and its applications. Numerous strategies are identified that are employed by organisations to overcome these challenges. Wastewater treatment, regulation, monitoring, the mixing of treated effluent with freshwater and limited public discussion of water reuse are all employed to achieve maximum use of reclaimed water. Each strategy presents benefits of sort, but some may paradoxically also inhibit optimal use of reclaimed water. Careful modifications to the existing strategies of Jordanian agencies, such as more open discussion of reuse, could lead to greater social, economic and environmental gains.
Resumo:
A mathematical model incorporating many of the important processes at work in the crystallization of emulsions is presented. The model describes nucleation within the discontinuous domain of an emulsion, precipitation in the continuous domain, transport of monomers between the two domains, and formation and subsequent growth of crystals in both domains. The model is formulated as an autonomous system of nonlinear, coupled ordinary differential equations. The description of nucleation and precipitation is based upon the Becker–Döring equations of classical nucleation theory. A particular feature of the model is that the number of particles of all species present is explicitly conserved; this differs from work that employs Arrhenius descriptions of nucleation rate. Since the model includes many physical effects, it is analyzed in stages so that the role of each process may be understood. When precipitation occurs in the continuous domain, the concentration of monomers falls below the equilibrium concentration at the surface of the drops of the discontinuous domain. This leads to a transport of monomers from the drops into the continuous domain that are then incorporated into crystals and nuclei. Since the formation of crystals is irreversible and their subsequent growth inevitable, crystals forming in the continuous domain effectively act as a sink for monomers “sucking” monomers from the drops. In this case, numerical calculations are presented which are consistent with experimental observations. In the case in which critical crystal formation does not occur, the stationary solution is found and a linear stability analysis is performed. Bifurcation diagrams describing the loci of stationary solutions, which may be multiple, are numerically calculated.
Resumo:
Climate change is expected to modify rainfall, temperature and catchment hydrological responses across the world, and adapting to these water-related changes is a pressing challenge. This paper reviews the impact of anthropogenic climate change on water in the UK and looks at projections of future change. The natural variability of the UK climate makes change hard to detect; only historical increases in air temperature can be attributed to anthropogenic climate forcing, but over the last 50 years more winter rainfall has been falling in intense events. Future changes in rainfall and evapotranspiration could lead to changed flow regimes and impacts on water quality, aquatic ecosystems and water availability. Summer flows may decrease on average, but floods may become larger and more frequent. River and lake water quality may decline as a result of higher water temperatures, lower river flows and increased algal blooms in summer, and because of higher flows in the winter. In communicating this important work, researchers should pay particular attention to explaining confidence and uncertainty clearly. Much of the relevant research is either global or highly localized: decision-makers would benefit from more studies that address water and climate change at a spatial and temporal scale appropriate for the decisions they make
Resumo:
The antioxidant activity and interactions with copper of four olive oil phenolic compounds, namely oleuropein, hydroxytyrosol, 3,4- dihydroxyphenylethanol- elenolic acid ( 1), and 3,4- dihydroxyphenyl-ethanolelenolic acid dialdehyde ( 2), in olive oil and oil- in- water emulsions stored at 60 degrees C were studied. All four phenolic compounds significantly extended the induction time of lipid oxidation in olive oil with the order of activity being hydroxytyrosol > compound 1 > compound 2 > oleuropein > alpha- tocopherol; but in the presence of Cu( II), the stability of oil samples containing phenolic compounds decreased by at least 90%, and the antioxidant activity of hydroxytyrosol and compounds 1 and 2 became similar. In oil- in- water emulsions prepared from olive oil stripped of tocopherols, hydroxytyrosol enhanced the prooxidant effect of copper at pH 5.5 but not at pH 7.4. The stability of samples containing copper at pH 5.5 was not significantly different if oleuropein was present from that of the control. Oleuropein at pH 7.4, and compounds 1 and 2 at both pH values tested, reduced the prooxidant effect of copper. The lower stability and the higher reducing capacity of all compounds at pH 7.4 could not explain the higher stability of emulsions containing phenolic compounds at this pH value. However, mixtures containing hydroxytyrosol or oleuropein with copper showed higher 1,1-diphenyl- 2- picrylhydrazyl radical scavenging activity at pH 7.4 than at pH 5.5. Moreover, the compound 2- copper complex showed higher radical scavenging activity then the uncomplexed compound at pH 5.5. It can be concluded that the formation of a copper complex with radical scavenging activity is a key step in the antioxidant action of the olive oil phenolic compounds in an emulsion containing copper ions.
Resumo:
Antioxidant properties in food are dependent on various parameters. These include the pH value and interactions with food components, including proteins or metal ions. food components affect antioxidant stability and also influence the properties of microorganisms and their viability. This paper describes an investigation of the effect of pH on the antioxidant and antibacterial properties of caffeic acid in different media. The pH values studied, using an oil-in-water emulsion as model system, were 3, 5 (with and without phosphate buffer), and 9. Effects of mixtures of caffeic acid, bovine serum albumin (BSA), and Fe (III) on oxidative deterioration in the emulsion samples were studied. The results show that the antioxidant activity of caffeic acid was increased by the presence of BSA. This effect was pH dependent and was affected by the presence of iron Ions. Antibacterial properties were also pH dependent. The minimum concentration of caffeic acid required to inhibit some microorganisms in the pH range of 5 to 7 was determined. A concentration of 0.41% (w/w) caffeic acid was enough to inhibit the growth of some of the studied microorganisms in the pH range of 5 to 7. However, near-neutral pH concentrations higher than 0.4% were needed to inhibit some microorganisms, including Listeria monocytogenes, E. coli, and Staphylococcus aureus, in the medium.
Resumo:
The antioxidant activity of an extract from Teaw (Cratoxylum formosum Dyer) leaves was studied in soybean oil and soybean oil-in-water emulsions. Samples containing the extract or reference antioxidants including chlorogenic acid, which comprises 60% of the Teaw extract, were stored at 60 degrees C and analyzed periodically for peroxide value (PV) and thiobarbituric acid reactive substances (TBARS) to allow both hydroperoxides and hydroperoxide degradation products to be monitored. Chlorogenic acid and the Teaw extract were more effective than a-tocopherol in inhibiting lipid oxidation in bulk oil but were less effective in an oil-in-water emulsion in accordance with the polar paradox. The PV/TBARS ratio for oil samples containing chlorogenic acid was higher than for alpha-tocopherol and BHT because chlorogenic acid inhibits both hydroperoxide formation by radical scavenging and hydroperoxide decomposition by metal chelation. The importance of the metal-chelating activity in retarding hydroperoxide decomposition was confirmed by studying the decomposition of oil samples containing added ferric ions. The PV/TBARS ratio was higher for citric acid than for (x-tocopherol in the presence of added ferric chloride, but the order was reversed in samples lacking ferric chloride. Samples containing added chlorogenic acid gave the highest PV/TBARS ratios both in the presence and absence of ferric ions. The PV/TBARS ratios for the samples containing antioxidants fell rapidly to lower values in a soybean oil-in-water emulsion than in the soybean oil. This was due to increased hydroperoxide decomposition in the emulsion at the same PV. The Teaw extract contained 12% oil-soluble components, which contributed to a slightly higher oil-water partition coefficient than that of chlorogenic acid. The antioxidant activity of the aqueous phase of the Teaw extract was reduced more than that of chlorogenic acid by partitioning of the oil-soluble components into oil, which showed that the less-polar components contributed to the antioxidant activity of the Teaw extract in aqueous media.
Resumo:
The effects of specific nutrients on secretion and plasma concentrations of gut peptides (glucagon-like peptide-1((7-36)) amide (GLP-1), glucose-dependent insulinotropic polypeptide (GIP), and cholecystokinin-8 (CCK)) differ across species, but are not reported for cattle. Our objective was to determine acute (hours) and chronic (1 week) effects of increased abomasal supply of protein, carbohydrate, or fat to the small intestine on dry matter intake (DMI) and plasma concentrations of GLP-1, GIP, CCK, and insulin. Four mid-lactation Holstein cows were used in a 4 x 4 Latin square design experiment. Treatments were 7-day abomasal infusions of water, soybean oil (500 g/d), corn starch (1100 g/d), or casein (800 g/d). Jugular vein plasma was obtained over 7 h at the end of the first and last day of infusions. Oil infusion decreased DMI on day 7, but total metabolizable energy (ME) supply (diet plus infusate) did not differ from water infusion. Casein and starch infusion had no effect on feed DMI; thus, ME supply increased. Decreased DMI on day 7 of oil infusion was accompanied by increased plasma GLP-1 concentration, but decreased plasma CCK concentration. Increased plasma GIP concentration was associated with increased ME supply on day 7 of casein and starch infusion. Casein infusion tended to increase plasma CCK concentration on both days of sampling, and increased plasma GLP-1 and insulin concentration on day 1 of infusion. The present data indicate a sustained elevation of plasma concentration of GLP-1, but not CCK, may contribute to the reduced DMI observed in dairy cows provided supplemental fat. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
The effects of increased postruminal supply of casein, corn starch, and soybean oil on plasma concentrations of the gastrointestinal hormones ghrelin and oxyntomodulin (OXM) were investigated. Four mid-lactation Holstein cows were used in a 4×4 Latin square. Treatments were continuous abomasal infusions (23h/d) for 7 d of water, soybean oil (500g/d), corn starch (1100g/d), or casein (800g/d). Jugular vein plasma was obtained every 30min for 7h on days 1 and 7. Soybean oil and casein infusion decreased preprandial plasma ghrelin concentration by approximately 20% on both d (time-by-treatment P<0.10); however, dry matter intake (DMI) was depressed only after 7 d of oil infusion. Infusion of soybean oil, corn starch, or casein did not change the plasma OXM concentration (P>0.20). The present data indicate that plasma ghrelin concentration is depressed immediately before feeding by the postruminal infusion of soybean oil and casein, but it is not affected during the postprandial period. Plasma ghrelin concentration was not altered (P>0.20), pre- or postfeeding, by increased postruminal supply of corn starch. In addition, plasma OXM concentration did not respond (P>0.20) to postruminal nutrient infusion. In conclusion, a decrease in DMI when fat is infused could be partially explained by the decrease in prefeeding plasma ghrelin concentration, but a decrease in prefeeding plasma ghrelin concentration is not always associated with a decrease in DMI, as observed for the infusion of casein. Plasma OXM concentration was not affected by postruminal infusion of macronutrients.
Resumo:
Phase studies have been performed for quaternary systems composed of egg lecithin, cosurfactant, water and oil. The lecithin used was the commercially available egg lecithin Ovothin 200 (which comprises ≥ 92% phosphatidylcholine). The cosurfactants employed were propanol and butanol, and these were used at lecithin/cosurfactant mixing ratios (Km) of 1:1 and 1.94:1 (weight basis). Six polar oils were investigated, including the alkanoic acids, octanoic and oleic, their corresponding ethyl esters and the medium and long chain triglycerides, Miglyol 812 and soybean oil. All oils, irrespective of the alcohol and the Km used, gave rise to systems that produced a stable isotropic region along the surfactant/oil axis (designated as a reverse microemulsion system). In addition, the systems incorporating propanol at both Km and butanol at a Km of 1.94: 1, generally gave rise to a liquid crystalline region and, in some cases, a second isotropic non-birefingent area (designated as a normal microemulsion system). The phase behaviour observed was largely dependent upon the alcohol and Km used and the size and the polarity of the oil present.
Resumo:
The purpose of this study was to test the hypothesis that soil water content would vary spatially with distance from a tree row and that the effect would differ according to tree species. A field study was conducted on a kaolinitic Oxisol in the sub-humid highlands of western Kenya to compare soil water distribution and dynamics in a maize monoculture with that under maize (Zea mays L.) intercropped with a 3-year-old tree row of Grevillea robusta A. Cunn. Ex R. Br. (grevillea) and hedgerow of Senna spectabilis DC. (senna). Soil water content was measured at weekly intervals during one cropping season using a neutron probe. Measurements were made from 20 cm to a depth of 225 cm at distances of 75, 150, 300 and 525 cm from the tree rows. The amount of water stored was greater under the sole maize crop than the agroforestry systems, especially the grevillea-maize system. Stored soil water in the grevillea-maize system increased with increasing distance from the tree row but in the senna-maize system, it decreased between 75 and 300 cm from the hedgerow. Soil water content increased least and more slowly early in the season in the grevillea-maize system, and drying was also evident as the frequency of rain declined. Soil water content at the end of the cropping season was similar to that at the start of the season in the grevillea-maize system, but about 50 and 80 mm greater in the senna-maize and sole maize systems, respectively. The seasonal water balance showed there was 140 mm, of drainage from the sole maize system. A similar amount was lost from the agroforestry systems (about 160 mm in the grevillea-maize system and 145 mm in the senna-maize system) through drainage or tree uptake. The possible benefits of reduced soil evaporation and crop transpiration close to a tree row were not evident in the grevillea-maize system, but appeared to greatly compensate for water uptake losses in the senna-maize system. Grevillea, managed as a tree row, reduced stored soil water to a greater extent than senna, managed as a hedgerow.
Resumo:
The antioxidant effects of beta-carotene, oil-soluble (bixin) and water-soluble (norbixin) annatto preparations and mixtures of these carotenoids with virgin olive oil polar extract were assessed in bulk olive oil and oil-in-water emulsions stored at 60degreesC. Norbixin was the only carotenoid that inhibited the oxidative deterioration of lipids in both systems. Though bixin and beta-carotene did not retard autoxidation, their mixtures with the polar extract from virgin olive oil enhanced the antioxidant effect of the olive oil extract. Norbixin (2 mM) was of similar activity to delta-tocopherol (0.1 mM) in stored oil. The combination of norbixin with ascorbic acid or ascorbyl palmitate in oil showed a reduction in formation of volatile oxidation products but not in peroxide value, compared with the analogous sample lacking norbixin. In olive oil-in-water emulsions, norbixin (2 mM) reduced hydroperoxide formation to a similar extent as delta-tocopherol (0.1 mM), which in turn was a better antioxidant than alpha-tocopherol. A synergistic effect between norbixin and ascorbic acid or ascorbyl palmitate was observed in the emulsion systems. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
In this Study, volatile oxidation compounds formed in a commercial conjugated linoleic acid (CLA)-rich oil were quantified and results compared to those found in safflower oil (rich in linoleic acid, LA). Intact oil samples and pure triacylglycerols obtained following elimination of tocopherols and minor compounds were oxidised at 60 degrees C, and volatile oxidation compounds were analysed by solid phase microextraction-gas chromatography with flame ionisation detector and mass spectrometer. Results showed that while, as expected, hexanal was the major volatile oxidation compound found in oil and triacylglycerols rich in LA, both hexanal and heptanal equally were the most abundant compounds in oil and triacylglycerols rich in CLA. Besides, samples rich in CLA also showed significantly high quantities of trans-2-octenal and trans-2-nonenal and the latter, along with heptanal, were absent in samples rich in LA. Results for CLA samples were not easy to interpret since major volatiles found are not expected from theoretically stable hydroperoxides formed in CLA and could in part derive from dioxetanes coming from 1,2-cycloadclitions of CIA with oxygen. Overall, results obtained support evidence that oxidation mechanisms of CLA may differ than those of LA. Also, it was concluded that heptanal determination could serve as a useful marker of oxidation progress in CLA-rich oils. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
The reuse of treated wastewater (reclaimed water) is particularly well suited for irrigated agriculture as it often contains significant quantities of plant essential nutrients. This work has shown that reclaimed water in Jordan can have adequate concentrations of potassium, phosphate, sulphate and magnesium to meet all or part of the crop’s requirements. To fully benefit from these inputs farmers must have an awareness of the water quality and reduce the application of chemical fertilisers accordingly. Interviews with farmers have shown that 75 per cent of farmers indirectly using reclaimed water are aware of the nutrients. Farmers’ decision making as to the application of chemical fertilisers appears to be influenced by a range of factors which include the type of crops being cultivated, the provision of training on nutrient management and the availability of information on the nutrient content of the reclaimed water.
Resumo:
The governance of water resources is prominent in both water policy agendas and academic scholarship. Political ecologists have made important advances in reconceptualising the relationship between water and society. Yet, while they have stressed both the scalar dimensions, and the politicised nature, of water governance, analyses of its scalar politics are relatively nascent. In this paper, we consider how the increased demand for water resources by the growing mining industry in Peru reconfigures and rescales water governance. In Peru, the mining industry’s thirst for water draws in, and reshapes, social relations, technologies, institutions and discourses that operate over varying spatial and temporal scales. We develop the concept of waterscape to examine these multiple ways in water is co-produced through mining, and become embedded in changing modes and structures of water governance, often beyond the watershed scale. We argue that an examination of waterscapes avoids the limitations of thinking about water in purely material terms, structuring analysis of water issues according to traditional spatial scales and institutional hierarchies, and taking these scales and structures for granted.
Resumo:
This paper represents a study of the transient changes occurring in temperature, and moisture and oil contents during the so called “post-frying drainage”—which is the duration for which a product is held in the head space of the fryer after it is removed from the oil. Since most of the oil adhering to the product penetrates into the structure during this period, this paper examines the effects of applying vacuum during drainage (1.33 kPa) to maintain the product temperature consistently above the water saturation temperature corresponding to the prevailing pressure (11 °C), which potentially eliminates water condensation and prevents the occluded surface oil from penetrating into the product structure. Draining under vacuum significantly lowers the oil content of potato chips by 38% compared to atmospheric drainage. This phenomenon can be further confirmed by confocal laser scanning microscopy (CLSM) images, which show that the boundary between the core and the crust regions is clearly visible in the case of vacuum drainage, whereas in the case of atmospheric drainage, the oil is distributed throughout the structure. Unfortunately, the same approach did not reduce the oil content of French fries—the oil content of vacuum-drained product was found similar to the product obtained by draining under atmospheric pressure. This is because the reduction in oil content only occurs when there is net moisture evaporation from the product and the evaporation rate is sufficient to force out the oil from the product; this was clearly not the case with French fries. The CLSM images show that the oil distribution in the products drained under atmospheric pressure and vacuum was similar.