27 resultados para volleyball spike


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Shiga toxin producing Escherichia coli (STEC) strains are foodborne pathogens whose ability to produce Shiga toxin (Stx) is due to the integration of Stx-encoding lambdoid bacteriophage (Stx phage). Circulating, infective Stx phages are very difficult to isolate, purify and propagate such that there is no information on their genetic composition and properties. Here we describe a novel approach that exploits the phage's ability to infect their host and form a lysogen, thus enabling purification of Stx phages by a series of sequential lysogen isolation and induction steps. A total of 15 Stx phages were rigorously purified from water samples in this way, classified by TEM and genotyped using a PCR-based multi-loci characterisation system. Each phage possessed only one variant of each target gene type, thus confirming its purity, with 9 of the 15 phages possessing a short tail-spike gene and identified by TEM as Podoviridae. The remaining 6 phages possessed long tails, four of which appeared to be contractile in nature (Myoviridae) and two of which were morphologically very similar to bacteriophage lambda (Siphoviridae).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Near-isogenic lines (NILs) of winter wheat varying for alleles for reduced height (Rht), gibberellin (GA) response and photoperiod insensitivity (Ppd-D1a) in cv. Mercia background (rht (tall), Rht-B1b, Rht-D1b, Rht-B1c, Rht8c+Ppd-D1a, Rht-D1c, Rht12) and cv. Maris Widgeon (rht (tall), Rht-D1b, Rht-B1c) backgrounds were compared to investigate main effects and interactions with tillage (plough-based, minimum-, and zero-tillage) over two years. Both minimum- and zero- tillage were associated with reduced grain yields allied to reduced harvest index, biomass accumulation, interception of photosynthetically active radiation (PAR), and plant populations. Grain yields were optimized at mature crop heights of around 740mm because this provided the best compromise between harvest index which declined with height, and above ground biomass which increased with height. Improving biomass with height was due to improvements in both PAR interception and radiation-use efficiency. Optimum height for grain yield was unaffected by tillage system or GA-sensitivity. After accounting for effects of height, GA insensitivity was associated with increased grain yields due to increased grains per spike, which was more than enough to compensate for poorer plant establishment and lower mean grain weights compared to the GA-sensitive lines. Although better establishment was possible with GA-sensitive lines, there was no evidence that this effect interacted with tillage method. We find, therefore, little evidence to question the current adoption of wheats with reduced sensitivity to GA in the UK, even as tillage intensity lessens.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

During Oceanic Anoxic Event 1a (OAE 1a, 120 Ma; Li et al., 2008), organic carbon-rich layers were deposited in marine environments under anoxic conditions on a global scale. In this study, palaeoenvironmental conditions leading to this event are characterised by studying the Upper Barremian to the Lower Aptian succession of the Gorgo a Cerbara section (central Italy). For this, an integrated multi-proxy approach (δ13Ccarb; δ13Corg; δ18O; phosphorus; Total Organic Carbon, TOC; bulk-rock mineralogy, as well as redox-sensitive trace elements — RSTEs) has been applied. During the LateBarremian, thin organic-rich layers occur episodically, and associated Corg:Ptot ratios indicate the presence of intermittent dysoxic to anoxic conditions. Coarse correlations are observed between TOC, P and biogenic silica contents, indicating links between P availability, productivity, and TOC preservation. However, the corresponding δ13Ccarb and δ18O records remain quite stable, indicating that these brief periods of enhanced TOC preservation did not have sufficient impact on the marine carbon reservoir to deviate δ13C records. Around the Barremian–Aptian boundary, TOC-enriched layers become more frequent. These layers correlate with negative excursions in the δ13Ccarb and δ13Corg records, possibly due to a warming period as indicated by the δ18O record. During the earliest Aptian, this warming trend is reverted into a cooling trend, which is then followed by an important warming step near the onset of Oceanic Anoxic Event 1a (OAE 1a). During this time period, organic-rich intervals occur, which are characterised by the progressive increase in RSTE. The warming step prior the onset of OAE 1a is associated with the well-known negative spike in δ13Ccarb and δ13Corg records, an important peak in P accumulation, RSTE enrichments and Corg:Ptot ratios indicating the prevalence of anoxic conditions. The Selli Level itself may document a cooling phase. RSTE enrichments and Corg:Ptot ratios confirm the importance of anoxic conditions during OAE 1a at this site. The Gorgo a Cerbara section is interpreted to reflect the progressive impact of palaeoenvironmental change related to the formation of the Ontong-Java plate-basalt plateau, which started already around the Barremian–Aptian boundary and culminated into OAE 1a.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Voltage-gated potassium (Kv) channels are essential components of neuronal excitability. The Kv3.4 channel protein is widely distributed throughout the central nervous system (CNS), where it can form heteromeric or homomeric Kv3 channels. Electrophysiological studies reported here highlight a functional role for this channel protein within neurons of the dorsal vagal nucleus (DVN). Current clamp experiments revealed that blood depressing substance (BDS) and intracellular dialysis of an anti-Kv3.4 antibody prolonged the action potential duration. In addition, a BDS sensitive, voltage-dependent, slowly inactivating outward current was observed in voltage clamp recordings from DVN neurons. Electrical stimulation of the solitary tract evoked EPSPs and IPSPs in DVN neurons and BDS increased the average amplitude and decreased the paired pulse ratio, consistent with a presynaptic site of action. This presynaptic modulation was action potential dependent as revealed by ongoing synaptic activity. Given the role of the Kv3 proteins in shaping neuronal excitability, these data highlight a role for homomeric Kv3.4 channels in spike timing and neurotransmitter release in low frequency firing neurons of the DVN.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Many studies have reported long-range synchronization of neuronal activity between brain areas, in particular in the beta and gamma bands with frequencies in the range of 14–30 and 40–80 Hz, respectively. Several studies have reported synchrony with zero phase lag, which is remarkable considering the synaptic and conduction delays inherent in the connections between distant brain areas. This result has led to many speculations about the possible functional role of zero-lag synchrony, such as for neuronal communication, attention, memory, and feature binding. However, recent studies using recordings of single-unit activity and local field potentials report that neuronal synchronization may occur with non-zero phase lags. This raises the questions whether zero-lag synchrony can occur in the brain and, if so, under which conditions. We used analytical methods and computer simulations to investigate which connectivity between neuronal populations allows or prohibits zero-lag synchrony. We did so for a model where two oscillators interact via a relay oscillator. Analytical results and computer simulations were obtained for both type I Mirollo–Strogatz neurons and type II Hodgkin–Huxley neurons. We have investigated the dynamics of the model for various types of synaptic coupling and importantly considered the potential impact of Spike-Timing Dependent Plasticity (STDP) and its learning window. We confirm previous results that zero-lag synchrony can be achieved in this configuration. This is much easier to achieve with Hodgkin–Huxley neurons, which have a biphasic phase response curve, than for type I neurons. STDP facilitates zero-lag synchrony as it adjusts the synaptic strengths such that zero-lag synchrony is feasible for a much larger range of parameters than without STDP.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Key point summary • Cerebellar ataxias are progressive debilitating diseases with no known treatment and are associated with defective motor function and, in particular, abnormalities to Purkinje cells. • Mutant mice with deficits in Ca2+ channel auxiliary α2δ-2 subunits are used as models of cerebellar ataxia. • Our data in the du2J mouse model shows an association between the ataxic phenotype exhibited by homozygous du2J/du2J mice and increased irregularity of Purkinje cell firing. • We show that both heterozygous +/du2J and homozygous du2J/du2J mice completely lack the strong presynaptic modulation of neuronal firing by cannabinoid CB1 receptors which is exhibited by litter-matched control mice. • These results show that the du2J ataxia model is associated with deficits in CB1 receptor signalling in the cerebellar cortex, putatively linked with compromised Ca2+ channel activity due to reduced α2δ-2 subunit expression. Knowledge of such deficits may help design therapeutic agents to combat ataxias. Abstract Cerebellar ataxias are a group of progressive, debilitating diseases often associated with abnormal Purkinje cell (PC) firing and/or degeneration. Many animal models of cerebellar ataxia display abnormalities in Ca2+ channel function. The ‘ducky’ du2J mouse model of ataxia and absence epilepsy represents a clean knock-out of the auxiliary Ca2+ channel subunit, α2δ-2, and has been associated with deficient Ca2+ channel function in the cerebellar cortex. Here, we investigate effects of du2J mutation on PC layer (PCL) and granule cell (GC) layer (GCL) neuronal spiking activity and, also, inhibitory neurotransmission at interneurone-Purkinje cell(IN-PC) synapses. Increased neuronal firing irregularity was seen in the PCL and, to a less marked extent, in the GCL in du2J/du2J, but not +/du2J, mice; these data suggest that the ataxic phenotype is associated with lack of precision of PC firing, that may also impinge on GC activity and requires expression of two du2J alleles to manifest fully. du2J mutation had no clear effect on spontaneous inhibitory postsynaptic current (sIPSC) frequency at IN-PC synapses, but was associated with increased sIPSC amplitudes. du2J mutation ablated cannabinoid CB1 receptor (CB1R)-mediated modulation of spontaneous neuronal spike firing and CB1Rmediated presynaptic inhibition of synaptic transmission at IN-PC synapses in both +/du2J and du2J/du2J mutants; effects that occurred in the absence of changes in CB1R expression. These results demonstrate that the du2J ataxia model is associated with deficient CB1R signalling in the cerebellar cortex, putatively linked with compromised Ca2+ channel activity and the ataxic phenotype.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cannabidiol (CBD) is a non-psychoactive, well-tolerated, anticonvulsant plant cannabinoid, although its mechanism(s) of seizure suppression remains unknown. Here, we investigate the effect of CBD and the structurally similar cannabinoid, cannabigerol (CBG), on voltage-gated Na+ (NaV) channels, a common anti-epileptic drug target. CBG’s anticonvulsant potential was also assessed in vivo. CBD effects on NaV channels were investigated using patch-clamp recordings from rat CA1 hippocampal neurons in brain slices, human SH-SY5Y (neuroblastoma) cells and mouse cortical neurons in culture. CBG effects were also assessed in SH-SY5Y cells and mouse cortical neurons. CBD and CBG effects on veratridine-stimulated human recombinant NaV1.1, 1.2 or 1.5 channels were assessed using a membrane potential-sensitive fluorescent dye high-throughput assay. The effect of CBG on pentyleneterazole-induced (PTZ) seizures was assessed in rat. CBD (10M) blocked NaV currents in SH-SY5Y cells, mouse cortical neurons and recombinant cell lines, and affected spike parameters in rat CA1 neurons; CBD also significantly decreased membrane resistance. CBG blocked NaV to a similar degree to CBD in both SH-SY5Y and mouse recordings, but had no effect (50-200mg/kg) on PTZ-induced seizures in rat. CBD and CBG are NaV channel blockers at micromolar concentrations in human and murine neurons and recombinant cells. In contrast to previous reports investigating CBD, CBG had no effect upon PTZ-induced seizures in rat, indicating that NaV blockade per se does not correlate with anticonvulsant effects.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Epilepsy is the most common neurological disorder, with over 50 million people worldwide affected. Recent evidence suggests that the transient receptor potential cation channel subfamily V member 1 (TRPV1) may contribute to the onset and progression of some forms of epilepsy. Since the two nonpsychotropic cannabinoids cannabidivarin (CBDV) and cannabidiol (CBD) exert anticonvulsant activity in vivo and produce TRPV1-mediated intracellular calcium elevation in vitro, we evaluated the effects of these two compounds on TRPV1 channel activation and desensitization and in an in vitro model of epileptiform activity. Patch clamp analysis in transfected HEK293 cells demonstrated that CBD and CBDV dose-dependently activate and rapidly desensitize TRPV1, as well as TRP channels of subfamily V type 2 (TRPV2) and subfamily A type 1 (TRPA1). TRPV1 and TRPV2 transcripts were shown to be expressed in rat hippocampal tissue. When tested on epileptiform neuronal spike activity in hippocampal brain slices exposed to a Mg2+-free solution using multielectrode arrays (MEAs), CBDV reduced both epileptiform burst amplitude and duration. The prototypical TRPV1 agonist, capsaicin, produced similar, although not identical effects. Capsaicin, but not CBDV, effects on burst amplitude were reversed by IRTX, a selective TRPV1 antagonist. These data suggest that CBDV antiepileptiform effects in the Mg2+-free model are not uniquely mediated via activation of TRPV1. However, TRPV1 was strongly phosphorylated (and hence likely sensitized) in Mg2+-free solution-treated hippocampal tissue, and both capsaicin and CBDV caused TRPV1 dephosphorylation, consistent with TRPV1 desensitization. We propose that CBDV effects on TRP channels should be studied further in different in vitro and in vivo models of epilepsy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Observational analyses of running 5-year ocean heat content trends (Ht) and net downward top of atmosphere radiation (N) are significantly correlated (r~0.6) from 1960 to 1999, but a spike in Ht in the early 2000s is likely spurious since it is inconsistent with estimates of N from both satellite observations and climate model simulations. Variations in N between 1960 and 2000 were dominated by volcanic eruptions, and are well simulated by the ensemble mean of coupled models from the Fifth Coupled Model Intercomparison Project (CMIP5). We find an observation-based reduction in N of -0.31±0.21 Wm-2 between 1999 and 2005 that potentially contributed to the recent warming slowdown, but the relative roles of external forcing and internal variability remain unclear. While present-day anomalies of N in the CMIP5 ensemble mean and observations agree, this may be due to a cancellation of errors in outgoing longwave and absorbed solar radiation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Monolayers of neurons and glia have been employed for decades as tools for the study of cellular physiology and as the basis for a variety of standard toxicological assays. A variety of three dimensional (3D) culture techniques have been developed with the aim to produce cultures that recapitulate desirable features of intact. In this study, we investigated the effect of preparing primary mouse mixed neuron and glial cultures in the inert 3D scaffold, Alvetex. Using planar multielectrode arrays, we compared the spontaneous bioelectrical activity exhibited by neuroglial networks grown in the scaffold with that seen in the same cells prepared as conventional monolayer cultures. Two dimensional (monolayer; 2D) cultures exhibited a significantly higher spike firing rate than that seen in 3D cultures although no difference was seen in total signal power (<50 Hz) while pharmacological responsiveness of each culture type to antagonism of GABAAR, NMDAR and AMPAR was highly comparable. Interestingly, correlation of burst events, spike firing and total signal power (<50 Hz) revealed that local field potential events were associated with action potential driven bursts as was the case for 2D cultures. Moreover, glial morphology was more physiologically normal in 3D cultures. These results show that 3D culture in inert scaffolds represents a more physiologically normal preparation which has advantages for physiological, pharmacological, toxicological and drug development studies, particularly given the extensive use of such preparations in high throughput and high content systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The utility of the decimal growth stage (DGS) scoring system for cereals is reviewed. The DGS is the most widely used scale in academic and commercial applications because of its comprehensive coverage of cereal developmental stages, the ease of use and definition provided and adoption by official agencies. The DGS has demonstrable and established value in helping to optimise the timing of agronomic inputs, particularly with regard to plant growth regulators, herbicides, fungicides and soluble nitrogen fertilisers. In addition, the DGS is used to help parameterise crop models, and also in understanding the response and adaptation of crops to the environment. The value of the DGS for increasing precision relies on it indicating, to some degree, the various stages in the development of the stem apex and spike. Coincidence of specific growth stage scores with the transition of the apical meristem from a vegetative to a reproductive state, and also with the period of meiosis, is unreliable. Nonetheless, in pot experiments it is shown that the broad period of booting (DGS 41–49) appears adequate for covering the duration when the vulnerability of meiosis to drought and heat stress is exposed. Similarly, the duration of anthesis (61–69) is particularly susceptible to abiotic stresses: initially from a fertility perspective, but increasingly from a mean grain weight perspective as flowering progresses to DGS 69 and then milk development. These associations with DGS can have value at the crop level of organisation: for interpreting environmental effects, and in crop modelling. However, genetic, biochemical and physiological analysis to develop greater understanding of stress acclimation during the vegetative state, and tolerance at meiosis, does require more precision than DGS can provide. Similarly, individual floret analysis is needed to further understand the genetic basis of stress tolerance during anthesis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Genetic modification of shoot and root morphology has potential to improve water and nutrient 19 uptake of wheat crops in rainfed environments. Near-isogenic lines (NILs) varying for a tillering 20 inhibition (tin) gene and representing multiple genetic backgrounds were investigated in contrasting 21 controlled environments for shoot and root growth. Leaf area, shoot and root biomass were similar 22 until tillering whereupon reduced tillering in tin-containing NILs produced reductions of up to 60% in 23 total leaf area and biomass, and increases in total root length of up to 120% and root biomass to 24 145%. Together, root-to-shoot ratio increased two-fold with the tin gene. The influence of tin on shoot 25 and root growth was greatest in the cv. Banks genetic background, particularly in the biculm-selected 26 NIL, and was typically strongest in cooler environments. A separate de-tillering study confirmed 27 greater root-to-shoot ratios with regular tiller removal in non-tin containing genotypes. In validating 28 these observations in a rainfed field study, the tin allele had a negligible effect on seedling growth but 29 was associated with significantly (P<0.05) reduced tiller number (-37%), leaf area index (-26%) and 30 spike number (-35%) to reduce plant biomass (-19%) at anthesis. Root biomass, root-to-shoot ratio at 31 early stem elongation and root depth at maturity were increased in tin-containing NILs. Soil water use 32 was slowed in tin-containing NILs resulting in greater water availability, greater stomatal 33 conductance, cooler canopy temperatures and maintenance of green leaf area during grain-filling. 34 Together these effects contributed to increases in harvest index and grain yield. In both the controlled 35 and field environments, the tin gene was commonly associated with increased root length and biomass 36 but the significant influence of genetic background and environment suggests careful assessment of 37 tin-containing progeny in selection for genotypic increases in root growth.