39 resultados para visual object detection


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper reports the current state of work to simplify our previous model-based methods for visual tracking of vehicles for use in a real-time system intended to provide continuous monitoring and classification of traffic from a fixed camera on a busy multi-lane motorway. The main constraints of the system design were: (i) all low level processing to be carried out by low-cost auxiliary hardware, (ii) all 3-D reasoning to be carried out automatically off-line, at set-up time. The system developed uses three main stages: (i) pose and model hypothesis using 1-D templates, (ii) hypothesis tracking, and (iii) hypothesis verification, using 2-D templates. Stages (i) & (iii) have radically different computing performance and computational costs, and need to be carefully balanced for efficiency. Together, they provide an effective way to locate, track and classify vehicles.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent work has suggested that for some tasks, graphical displays which visually integrate information from more than one source offer an advantage over more traditional displays which present the same information in a separated format. Three experiments are described which investigate this claim using a task which requires subjects to control a dynamic system. In the first experiment, the integrated display is compared to two separated displays, one an animated mimic diagram, the other an alphanumeric display. The integrated display is shown to support better performance in a control task, but experiment 2 shows that part of this advantage may be due to its analogue nature. Experiment 3 considers performance on a fault detection task, and shows no difference between the integrated and separated displays. The paper concludes that previous claims made for integrated displays may not generalize from monitoring to control tasks.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The coding of body part location may depend upon both visual and proprioceptive information, and allows targets to be localized with respect to the body. The present study investigates the interaction between visual and proprioceptive localization systems under conditions of multisensory conflict induced by optokinetic stimulation (OKS). Healthy subjects were asked to estimate the apparent motion speed of a visual target (LED) that could be located either in the extrapersonal space (visual encoding only, V), or at the same distance, but stuck on the subject's right index finger-tip (visual and proprioceptive encoding, V-P). Additionally, the multisensory condition was performed with the index finger kept in position both passively (V-P passive) and actively (V-P active). Results showed that the visual stimulus was always perceived to move, irrespective of its out- or on-the-body location. Moreover, this apparent motion speed varied consistently with the speed of the moving OKS background in all conditions. Surprisingly, no differences were found between V-P active and V-P passive conditions in the speed of apparent motion. The persistence of the visual illusion during the active posture maintenance reveals a novel condition in which vision totally dominates over proprioceptive information, suggesting that the hand-held visual stimulus was perceived as a purely visual, external object despite its contact with the hand.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The authors assessed rats' encoding of the appearance or egocentric position of objects within visual scenes containing 3 objects (Experiment 1) or I object (Experiment 2A). Experiment 2B assessed encoding of the shape and fill pattern of single objects, and encoding of configurations (object + position, shape + fill). All were assessed by testing rats' ability to discriminate changes from familiar scenes (constant-negative paradigm). Perirhinal cortex lesions impaired encoding of objects and their shape; postrhinal cortex lesions impaired encoding of egocentric position, but the effect may have been partly due to entorhinal involvement. Neither lesioned group was impaired in detecting configural change. In Experiment 1, both lesion groups were impaired in detecting small changes in relative position of the 3 objects, suggesting that more sensitive tests might reveal configural encoding deficits.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Perirhinal cortex in monkeys has been thought to be involved in visual associative learning. The authors examined rats' ability to make associations between visual stimuli in a visual secondary reinforcement task. Rats learned 2-choice visual discriminations for secondary visual reinforcement. They showed significant learning of discriminations before any primary reinforcement. Following bilateral perirhinal cortex lesions, rats continued to learn visual discriminations for visual secondary reinforcement at the same rate as before surgery. Thus, this study does not support a critical role of perirhinal cortex in learning for visual secondary reinforcement. Contrasting this result with other positive results, the authors suggest that the role of perirhinal cortex is in "within-object" associations and that it plays a much lesser role in stimulus-stimulus associations between objects.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Between 8 and 40% of Parkinson disease (PD) patients will have visual hallucinations (VHs) during the course of their illness. Although cognitive impairment has been identified as a risk factor for hallucinations, more specific neuropsychological deficits underlying such phenomena have not been established. Research in psychopathology has converged to suggest that hallucinations are associated with confusion between internal representations of events and real events (i.e. impaired-source monitoring). We evaluated three groups: 17 Parkinson's patients with visual hallucinations, 20 Parkinson's patients without hallucinations and 20 age-matched controls, using tests of visual imagery, visual perception and memory, including tests of source monitoring and recollective experience. The study revealed that Parkinson's patients with hallucinations appear to have intact visual imagery processes and spatial perception. However, there were impairments in object perception and recognition memory, and poor recollection of the encoding episode in comparison to both non-hallucinating Parkinson's patients and healthy controls. Errors were especially likely to occur when encoding and retrieval cues were in different modalities. The findings raise the possibility that visual hallucinations in Parkinson's patients could stem from a combination of faulty perceptual processing of environmental stimuli, and less detailed recollection of experience combined with intact image generation. (C) 2002 Elsevier Science Ltd. All fights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the past decade, airborne based LIght Detection And Ranging (LIDAR) has been recognised by both the commercial and public sectors as a reliable and accurate source for land surveying in environmental, engineering and civil applications. Commonly, the first task to investigate LIDAR point clouds is to separate ground and object points. Skewness Balancing has been proven to be an efficient non-parametric unsupervised classification algorithm to address this challenge. Initially developed for moderate terrain, this algorithm needs to be adapted to handle sloped terrain. This paper addresses the difficulty of object and ground point separation in LIDAR data in hilly terrain. A case study on a diverse LIDAR data set in terms of data provider, resolution and LIDAR echo has been carried out. Several sites in urban and rural areas with man-made structure and vegetation in moderate and hilly terrain have been investigated and three categories have been identified. A deeper investigation on an urban scene with a river bank has been selected to extend the existing algorithm. The results show that an iterative use of Skewness Balancing is suitable for sloped terrain.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Light Detection And Ranging (LIDAR) is an important modality in terrain and land surveying for many environmental, engineering and civil applications. This paper presents the framework for a recently developed unsupervised classification algorithm called Skewness Balancing for object and ground point separation in airborne LIDAR data. The main advantages of the algorithm are threshold-freedom and independence from LIDAR data format and resolution, while preserving object and terrain details. The framework for Skewness Balancing has been built in this contribution with a prediction model in which unknown LIDAR tiles can be categorised as “hilly” or “moderate” terrains. Accuracy assessment of the model is carried out using cross-validation with an overall accuracy of 95%. An extension to the algorithm is developed to address the overclassification issue for hilly terrain. For moderate terrain, the results show that from the classified tiles detached objects (buildings and vegetation) and attached objects (bridges and motorway junctions) are separated from bare earth (ground, roads and yards) which makes Skewness Balancing ideal to be integrated into geographic information system (GIS) software packages.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper describes the novel use of agent and cellular neural Hopfield network techniques in the design of a self-contained, object detecting retina. The agents, which are used to detect features within an image, are trained using the Hebbian method which has been modified for the cellular architecture. The success of each agent is communicated with adjacent agents in order to verify the detection of an object. Initial work used the method to process bipolar images. This has now been extended to handle grey scale images. Simulations have demonstrated the success of the method and further work is planned in which the device is to be implemented in hardware.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An overview is given of a vision system for locating, recognising and tracking multiple vehicles, using an image sequence taken by a single camera mounted on a moving vehicle. The camera motion is estimated by matching features on the ground plane from one image to the next. Vehicle detection and hypothesis generation are performed using template correlation and a 3D wire frame model of the vehicle is fitted to the image. Once detected and identified, vehicles are tracked using dynamic filtering. A separate batch mode filter obtains the 3D trajectories of nearby vehicles over an extended time. Results are shown for a motorway image sequence.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents recent developments to a vision-based traffic surveillance system which relies extensively on the use of geometrical and scene context. Firstly, a highly parametrised 3-D model is reported, able to adopt the shape of a wide variety of different classes of vehicle (e.g. cars, vans, buses etc.), and its subsequent specialisation to a generic car class which accounts for commonly encountered types of car (including saloon, batchback and estate cars). Sample data collected from video images, by means of an interactive tool, have been subjected to principal component analysis (PCA) to define a deformable model having 6 degrees of freedom. Secondly, a new pose refinement technique using “active” models is described, able to recover both the pose of a rigid object, and the structure of a deformable model; an assessment of its performance is examined in comparison with previously reported “passive” model-based techniques in the context of traffic surveillance. The new method is more stable, and requires fewer iterations, especially when the number of free parameters increases, but shows somewhat poorer convergence. Typical applications for this work include robot surveillance and navigation tasks.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Within the context of active vision, scant attention has been paid to the execution of motion saccades—rapid re-adjustments of the direction of gaze to attend to moving objects. In this paper we first develop a methodology for, and give real-time demonstrations of, the use of motion detection and segmentation processes to initiate capture saccades towards a moving object. The saccade is driven by both position and velocity of the moving target under the assumption of constant target velocity, using prediction to overcome the delay introduced by visual processing. We next demonstrate the use of a first order approximation to the segmented motion field to compute bounds on the time-to-contact in the presence of looming motion. If the bound falls below a safe limit, a panic saccade is fired, moving the camera away from the approaching object. We then describe the use of image motion to realize smooth pursuit, tracking using velocity information alone, where the camera is moved so as to null a single constant image motion fitted within a central image region. Finally, we glue together capture saccades with smooth pursuit, thus effecting changes in both what is being attended to and how it is being attended to. To couple the different visual activities of waiting, saccading, pursuing and panicking, we use a finite state machine which provides inherent robustness outside of visual processing and provides a means of making repeated exploration. We demonstrate in repeated trials that the transition from saccadic motion to tracking is more likely to succeed using position and velocity control, than when using position alone.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A near real-time flood detection algorithm giving a synoptic overview of the extent of flooding in both urban and rural areas, and capable of working during night-time and day-time even if cloud was present, could be a useful tool for operational flood relief management. The paper describes an automatic algorithm using high resolution Synthetic Aperture Radar (SAR) satellite data that builds on existing approaches, including the use of image segmentation techniques prior to object classification to cope with the very large number of pixels in these scenes. Flood detection in urban areas is guided by the flood extent derived in adjacent rural areas. The algorithm assumes that high resolution topographic height data are available for at least the urban areas of the scene, in order that a SAR simulator may be used to estimate areas of radar shadow and layover. The algorithm proved capable of detecting flooding in rural areas using TerraSAR-X with good accuracy, and in urban areas with reasonable accuracy. The accuracy was reduced in urban areas partly because of TerraSAR-X’s restricted visibility of the ground surface due to radar shadow and layover.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There is a rising demand for the quantitative performance evaluation of automated video surveillance. To advance research in this area, it is essential that comparisons in detection and tracking approaches may be drawn and improvements in existing methods can be measured. There are a number of challenges related to the proper evaluation of motion segmentation, tracking, event recognition, and other components of a video surveillance system that are unique to the video surveillance community. These include the volume of data that must be evaluated, the difficulty in obtaining ground truth data, the definition of appropriate metrics, and achieving meaningful comparison of diverse systems. This chapter provides descriptions of useful benchmark datasets and their availability to the computer vision community. It outlines some ground truth and evaluation techniques, and provides links to useful resources. It concludes by discussing the future direction for benchmark datasets and their associated processes.