20 resultados para vasodilation
Resumo:
Calcitonin gene-related peptide (CGRP) exerts its diverse effects on vasodilation, nociception, secretion, and motor function through a heterodimeric receptor comprising of calcitonin receptor-like receptor (CLR) and receptor activity-modifying protein 1 (RAMP1). Despite the importance of CLR.RAMP1 in human disease, little is known about its distribution in the human gastrointestinal (GI) tract, where it participates in inflammation and pain. In this study, we determined that CLR and RAMP1 mRNAs are expressed in normal human stomach, ileum and colon by RT-PCR. We next characterized antibodies that we generated to rat CLR and RAMP1 in transfected HEK cells. Having characterized these antibodies in vitro, we then localized CLR-, RAMP1-, CGRP- and intermedin-immunoreactivity (IMD-IR) in various human GI segments. In the stomach, nerve bundles in the myenteric plexus and nerve fibers throughout the circular and longitudinal muscle had prominent CLR-IR. In the proximal colon and ileum, CLR was found in nerve varicosities of the myenteric plexus and surrounding submucosal neurons. Interestingly, CGRP expressing fibers did not co-localize, but were in close proximity to CLR. However, CLR and RAMP1, the two subunits of a functional CGRP receptor were clearly localized in myenteric plexus, where they may form functional cell-surface receptors. IMD, another member of calcitonin peptide family was also found in close proximity to CLR, and like CGRP, did not co-localize with either CLR or RAMP1 receptors. Thus, CGRP and IMD appear to be released locally, where they can mediate their effect on their receptors regulating diverse functions such as inflammation, pain and motility.
Resumo:
BACKGROUND: The endothelial nitric-oxide synthase (NOS3) gene encodes the enzyme (eNOS) that synthesizes the molecule nitric oxide, which facilitates endothelium-dependent vasodilation in response to physical activity. Thus, energy expenditure may modify the association between the genetic variation at NOS3 and blood pressure. METHODS: To test this hypothesis, we genotyped 11 NOS3 polymorphisms, capturing all common variations, in 726 men and women from the Medical Research Council (MRC) Ely Study (age (mean +/- s.d.): 55 +/- 10 years, body mass index: 26.4 +/- 4.1 kg/m(2)). Habitual/non-resting energy expenditure (NREE) was assessed via individually calibrated heart rate monitoring over 4 days. RESULTS: The intronic variant, IVS25+15 [G-->A], was significantly associated with blood pressure; GG homozygotes had significantly lower levels of diastolic blood pressure (DBP) (-2.8 mm Hg; P = 0.016) and systolic blood pressure (SBP) (-1.9 mm Hg; P = 0.018) than A-allele carriers. The interaction between NREE and IVS25+15 was also significant for both DBP (P = 0.006) and SBP (P = 0.026), in such a way that the effect of the GG-genotype on blood pressure was stronger in individuals with higher NREE (DBP: -4.9 mm Hg, P = 0.02. SBP: -3.8 mm Hg, P= 0.03 for the third tertile). Similar results were observed when the outcome was dichotomously defined as hypertension. CONCLUSIONS: In summary, the NOS3 IVS25+15 is directly associated with blood pressure and hypertension in white Europeans. However, the associations are most evident in the individuals with the highest NREE. These results need further replication and have to be ideally tested in a trial before being informative for targeted disease prevention. Eventually, the selection of individuals for lifestyle intervention programs could be guided by knowledge of genotype.
Resumo:
Evidence has accumulated in recent years that suggests that nitrate from the diet, particularly vegetables, is capable of producing bioactive NO in the vasculature, following bioconversion to nitrite by oral bacteria. The aim of the present review was to consider the current body of evidence for potential beneficial effects of dietary nitrate on blood pressure and endothelial function, with emphasis on evidence from acute and chronic human intervention studies. The studies to date suggest that dietary nitrate acutely lowers blood pressure in healthy humans. An inverse relationship was seen between dose of nitrate consumed and corresponding systolic blood pressure reduction, with doses of nitrate as low as 3 mmol of nitrate reducing systolic blood pressure by 3 mmHg. Moreover, the current studies provide some promising evidence on the beneficial effects of dietary nitrate on endothelial function. In vitro studies suggest a number of potential mechanisms by which dietary nitrate and its sequential reduction to NO may reduce blood pressure and improve endothelial function, such as: acting as a substrate for endothelial NO synthase; increasing vasodilation; inhibiting mitochondrial reactive oxygen species production and platelet aggregation. In conclusion, the evidence for beneficial effects of dietary nitrate on blood pressure and endothelial function is promising. Further long-term randomised controlled human intervention studies assessing the potential effects of dietary nitrate on blood pressure and endothelial function are needed, particularly in individuals with hypertension and at risk of CVD.
Resumo:
Increased vascular stiffness, endothelial dysfunction, and isolated systolic hypertension are hallmarks of vascular aging. Regular cocoa flavanol (CF) intake can improve vascular function in healthy young and elderly at-risk individuals. However, the mechanisms underlying CF bioactivity remain largely unknown. We investigated the effects of CF intake on cardiovascular function in healthy young and elderly individuals without history, signs, or symptoms of cardiovascular disease by applying particular focus on functional endpoints relevant to cardiovascular aging. In a randomized, controlled, double-masked, parallel-group dietary intervention trial, 22 young (<35yrs) and 20 elderly (50-80yrs) healthy, male non- smokers consumed either a CF-containing drink (450mg CF) or nutrient-matched, CF-free control drink bi-daily for 14 days. The primary endpoint was endothelial function as measured by flow-mediated vasodilation (FMD). Secondary endpoints included cardiac output, vascular stiffness, conductance of conduit and resistance arteries, and perfusion in the microcirculation. Following 2 weeks of CF intake, FMD improved in young (6.1±0.7% vs. 7.6±0.7%, p<0.001) and elderly (4.9±0.6% vs. 6.3±0.9%, p<0.001). Secondary outcomes demonstrated in both groups that CF intake decreased pulse wave velocity and lowered total peripheral resistance, increased arteriolar- and microvascular vasodilator capacity, red cell deformability, and diastolic blood pressure, while cardiac output remained affected. In the elderly, baseline systolic blood pressure was elevated, driven by an arterial stiffness-related augmentation. CF intake decreased aortic augmentation index (-9%), and thus systolic blood pressure (-7mmHg). (Clinicaltrials.gov:NCT01639781) CF intake reverses age-related burden of cardiovascular risk in healthy elderly, highlighting the potential of dietary flavanols to maintain cardiovascular health.
Resumo:
Cocoa flavanol (CF) intake improves endothelial function in patients with cardiovascular risk factors and disease. We investigated the effects of CF on surrogate markers of cardiovascular health in low risk, healthy, middle-aged individuals without history, signs or symptoms of CVD. In a 1-month, open-label, one-armed pilot study, bi-daily ingestion of 450 mg of CF led to a time-dependent increase in endothelial function (measured as flow-mediated vasodilation (FMD)) that plateaued after 2 weeks. Subsequently, in a randomised, controlled, double-masked, parallel-group dietary intervention trial (Clinicaltrials.gov: NCT01799005), 100 healthy, middle-aged (35–60 years) men and women consumed either the CF-containing drink (450 mg) or a nutrient-matched CF-free control bi-daily for 1 month. The primary end point was FMD. Secondary end points included plasma lipids and blood pressure, thus enabling the calculation of Framingham Risk Scores and pulse wave velocity. At 1 month, CF increased FMD over control by 1·2 % (95 % CI 1·0, 1·4 %). CF decreased systolic and diastolic blood pressure by 4·4 mmHg (95 % CI 7·9, 0·9 mmHg) and 3·9 mmHg (95 % CI 6·7, 0·9 mmHg), pulse wave velocity by 0·4 m/s (95 % CI 0·8, 0·04 m/s), total cholesterol by 0·20 mmol/l (95 % CI 0·39, 0·01 mmol/l) and LDL-cholesterol by 0·17 mmol/l (95 % CI 0·32, 0·02 mmol/l), whereas HDL-cholesterol increased by 0·10 mmol/l (95 % CI 0·04, 0·17 mmol/l). By applying the Framingham Risk Score, CF predicted a significant lowering of 10-year risk for CHD, myocardial infarction, CVD, death from CHD and CVD. In healthy individuals, regular CF intake improved accredited cardiovascular surrogates of cardiovascular risk, demonstrating that dietary flavanols have the potential to maintain cardiovascular health even in low-risk subjects.