43 resultados para urban-rural distinction
Resumo:
The aim of this paper is to stimulate discussion about how Chinese construction and professional service companies can best equip themselves and grow sustainably and profitably in a rapidly changing world. It identifies some of the issues and risks faced by Chinese construction and professional service companies operating domestically and overseas. China has experienced a period of rapid economic growth which is also reflected in the annual construction output. China’s population is the largest in the world, but the demographic profile is changing with an ageing population and a changing dependency ratio. The population is urbanising at a fast rate, putting pressure on housing, and infrastructure. The government must plan for the future and the construction sector must be involved in that planning. The paper considers the drivers shaping China’s construction market, how companies are responding by embracing change and internationalising by seeking to exploit their skills overseas. The drivers are globalisation, urbanisation, demographic change, sustainability, safety and health, and the evolution of professional services as a core part of construction activity. Clients/owners are driving change by demanding more certainty and more sustainable projects.
Resumo:
Children represent the most vulnerable members of society, and as such provide valuable insight into past lifeways. Adverse environmental conditions translate more readily into the osteological record of children, making them primary evidence for the investigation of ill-health in the past. To date, most information on growing up in Roman Britain has been based on the Classical literature, or discussed in palaeopathological studies with a regional focus, e.g. Dorset or Durnovaria. Thus, the lifestyles and everyday realities of children throughout Britannia remained largely unknown. This study sets out to fill this gap by providing the first large scale analysis of Romano-British children from town and country. The palaeopathological analysis of 1643 non-adult (0-17 years) skeletons, compiled from the literature (N=690) and primary osteological analysis (N=953), from 27 urban and rural settlements has highlighted diverse patterns in non-adult mortality and morbidity. The distribution of ages-at-death suggest that older children and adolescents migrated from country to town, possibly for commencing their working lives. True prevalence rates suggest that caries (1.8%) and enamel hypoplasia (11.4%) were more common in children from major urban towns, whereas children in the countryside displayed higher frequencies of scurvy (6.9%), cribra orbitalia (27.7%), porotic hyperostosis (6.2%) and endocranial lesions (10.9%). Social inequality in late Roman Britain may have been the driving force behind these urban-rural dichotomies. The results may point to exploitation of the peasantry on the one hand, and higher status of the urban population as a more ‘Romanised’ group on the other. Comparison with Iron Age and post-medieval non-adults also demonstrated a decline in health in the Roman period, with some levels of ill-health, particularly in the rural children, similar to those from post-medieval London. This research provides the most comprehensive study of non-adult morbidity and mortality in Roman Britain to date. It has provided new insights into Romano-British lifeways and presents suggestions for further work.
Resumo:
Background Lifestyle factors such as diet and physical activity have been shown to modify the association between fat mass and obesity–associated (FTO) gene variants and metabolic traits in several populations; however, there are no gene-lifestyle interaction studies, to date, among Asian Indians living in India. In this study, we examined whether dietary factors and physical activity modified the association between two FTO single nucleotide polymorphisms (rs8050136 and rs11076023) (SNPs) and obesity traits and type 2 diabetes (T2D). Methods The study included 734 unrelated T2D and 884 normal glucose-tolerant (NGT) participants randomly selected from the urban component of the Chennai Urban Rural Epidemiology Study (CURES). Dietary intakes were assessed using a validated interviewer administered semi-quantitative food frequency questionnaire (FFQ). Physical activity was based upon the self-report. Interaction analyses were performed by including the interaction terms in the linear/logistic regression model. Results There was a significant interaction between SNP rs8050136 and carbohydrate intake (% energy) (Pinteraction = 0.04), where the ‘A’ allele carriers had 2.46 times increased risk of obesity than those with ‘CC’ genotype (P = 3.0 × 10−5) among individuals in the highest tertile of carbohydrate intake (% energy, 71 %). A significant interaction was also observed between SNP rs11076023 and dietary fibre intake (Pinteraction = 0.0008), where individuals with AA genotype who are in the 3rd tertile of dietary fibre intake had 1.62 cm lower waist circumference than those with ‘T’ allele carriers (P = 0.02). Furthermore, among those who were physically inactive, the ‘A’ allele carriers of the SNP rs8050136 had 1.89 times increased risk of obesity than those with ‘CC’ genotype (P = 4.0 × 10−5). Conclusions This is the first study to provide evidence for a gene-diet and gene-physical activity interaction on obesity and T2D in an Asian Indian population. Our findings suggest that the association between FTO SNPs and obesity might be influenced by carbohydrate and dietary fibre intake and physical inactivity. Further understanding of how FTO gene influences obesity and T2D through dietary and exercise interventions is warranted to advance the development of behavioral intervention and personalised lifestyle strategies, which could reduce the risk of metabolic diseases in this Asian Indian population.
Resumo:
This paper uses spatial economic data from four small English towns to measure the strength of economic integration between town and hinterland and to estimate the magnitude of town-hinterland spill-over effects. Following estimation of local integration indicators and inter-locale flows, sub-regional social accounting matrices (SAMs) are developed to estimate the strength of local employment and output multipliers for various economic sectors. The potential value of a town as a 'sub-pole' in local economic development is shown to be dependent on structural differences in the local economy, such as the particular mix of firms within towns. Although the multipliers are generally small, indicating a low level of local linkages, some sectors, particularly financial services and banking, show consistently higher multipliers for both output and employment. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
A near real-time flood detection algorithm giving a synoptic overview of the extent of flooding in both urban and rural areas, and capable of working during night-time and day-time even if cloud was present, could be a useful tool for operational flood relief management. The paper describes an automatic algorithm using high resolution Synthetic Aperture Radar (SAR) satellite data that builds on existing approaches, including the use of image segmentation techniques prior to object classification to cope with the very large number of pixels in these scenes. Flood detection in urban areas is guided by the flood extent derived in adjacent rural areas. The algorithm assumes that high resolution topographic height data are available for at least the urban areas of the scene, in order that a SAR simulator may be used to estimate areas of radar shadow and layover. The algorithm proved capable of detecting flooding in rural areas using TerraSAR-X with good accuracy, and in urban areas with reasonable accuracy. The accuracy was reduced in urban areas partly because of TerraSAR-X’s restricted visibility of the ground surface due to radar shadow and layover.
Resumo:
A near real-time flood detection algorithm giving a synoptic overview of the extent of flooding in both urban and rural areas, and capable of working during night-time and day-time even if cloud was present, could be a useful tool for operational flood relief management and flood forecasting. The paper describes an automatic algorithm using high resolution Synthetic Aperture Radar (SAR) satellite data that assumes that high resolution topographic height data are available for at least the urban areas of the scene, in order that a SAR simulator may be used to estimate areas of radar shadow and layover. The algorithm proved capable of detecting flooding in rural areas using TerraSAR-X with good accuracy, and in urban areas with reasonable accuracy.
Resumo:
A near real-time flood detection algorithm giving a synoptic overview of the extent of flooding in both urban and rural areas, and capable of working during night-time and day-time even if cloud was present, could be a useful tool for operational flood relief management. The paper describes an automatic algorithm using high resolution Synthetic Aperture Radar (SAR) satellite data that builds on existing approaches, including the use of image segmentation techniques prior to object classification to cope with the very large number of pixels in these scenes. Flood detection in urban areas is guided by the flood extent derived in adjacent rural areas. The algorithm assumes that high resolution topographic height data are available for at least the urban areas of the scene, in order that a SAR simulator may be used to estimate areas of radar shadow and layover. The algorithm proved capable of detecting flooding in rural areas using TerraSAR-X with good accuracy, classifying 89% of flooded pixels correctly, with an associated false positive rate of 6%. Of the urban water pixels visible to TerraSAR-X, 75% were correctly detected, with a false positive rate of 24%. If all urban water pixels were considered, including those in shadow and layover regions, these figures fell to 57% and 18% respectively.
Resumo:
Background The persistence of rural-urban disparities in child nutrition outcomes in developing countries alongside rapid urbanisation and increasing incidence of child malnutrition in urban areas raises an important health policy question - whether fundamentally different nutrition policies and interventions are required in rural and urban areas. Addressing this question requires an enhanced understanding of the main drivers of rural-urban disparities in child nutrition outcomes especially for the vulnerable segments of the population. This study applies recently developed statistical methods to quantify the contribution of different socio-economic determinants to rural-urban differences in child nutrition outcomes in two South Asian countries – Bangladesh and Nepal. Methods Using DHS data sets for Bangladesh and Nepal, we apply quantile regression-based counterfactual decomposition methods to quantify the contribution of (1) the differences in levels of socio-economic determinants (covariate effects) and (2) the differences in the strength of association between socio-economic determinants and child nutrition outcomes (co-efficient effects) to the observed rural-urban disparities in child HAZ scores. The methodology employed in the study allows the covariate and coefficient effects to vary across entire distribution of child nutrition outcomes. This is particularly useful in providing specific insights into factors influencing rural-urban disparities at the lower tails of child HAZ score distributions. It also helps assess the importance of individual determinants and how they vary across the distribution of HAZ scores. Results There are no fundamental differences in the characteristics that determine child nutrition outcomes in urban and rural areas. Differences in the levels of a limited number of socio-economic characteristics – maternal education, spouse’s education and the wealth index (incorporating household asset ownership and access to drinking water and sanitation) contribute a major share of rural-urban disparities in the lowest quantiles of child nutrition outcomes. Differences in the strength of association between socio-economic characteristics and child nutrition outcomes account for less than a quarter of rural-urban disparities at the lower end of the HAZ score distribution. Conclusions Public health interventions aimed at overcoming rural-urban disparities in child nutrition outcomes need to focus principally on bridging gaps in socio-economic endowments of rural and urban households and improving the quality of rural infrastructure. Improving child nutrition outcomes in developing countries does not call for fundamentally different approaches to public health interventions in rural and urban areas.
Resumo:
Culex pipiens s.l. is one of the primary vectors of West Nile Virus in the USA and Continental Europe. The seasonal abundance and eco-behavioural characteristics of the typical form, Cx. pipiens pipiens, make it a key putative vector in Britain. Surveillance of Culex larvae and adults is essential to detect any changes to spatial and seasonal activity or morphological traits that may increase the risk of disease transmission. Here we report the use of the modified Reiter gravid box trap, which is commonly used in the USA but scarcely used in the UK, to assess its suitability as a tool for British female Culex mosquito surveillance. Trapping was carried out at 110 sites in urban and rural gardens in Berkshire in May, July and September 2013. We tested if reproductively active adult female Culex are more abundant in urban than rural gardens and if wing characteristic traits and egg raft size are influenced by location and seasonal variations. Gravid traps were highly selective for Culex mosquitoes, on average catching significantly more per trap in urban gardens (32.4 ± 6.2) than rural gardens (19.3 ± 4.0) and more in July than in May or September. The majority of females were caught alive in a good condition. Wing lengths were measured as an indicator of size. Females flying in September were significantly smaller than females in May or July. Further non-significant differences in morphology and fecundity between urban and rural populations were found that should be explored further across the seasons.
Resumo:
Flooding is a major hazard in both rural and urban areas worldwide, but it is in urban areas that the impacts are most severe. An investigation of the ability of high resolution TerraSAR-X Synthetic Aperture Radar (SAR) data to detect flooded regions in urban areas is described. The study uses a TerraSAR-X image of a 1 in 150 year flood near Tewkesbury, UK, in 2007, for which contemporaneous aerial photography exists for validation. The DLR SAR End-To-End simulator (SETES) was used in conjunction with airborne scanning laser altimetry (LiDAR) data to estimate regions of the image in which water would not be visible due to shadow or layover caused by buildings and taller vegetation. A semi-automatic algorithm for the detection of floodwater in urban areas is described, together with its validation using the aerial photographs. 76% of the urban water pixels visible to TerraSAR-X were correctly detected, with an associated false positive rate of 25%. If all urban water pixels were considered, including those in shadow and layover regions, these figures fell to 58% and 19% respectively. The algorithm is aimed at producing urban flood extents with which to calibrate and validate urban flood inundation models, and these findings indicate that TerraSAR-X is capable of providing useful data for this purpose.
Resumo:
Flooding is a major hazard in both rural and urban areas worldwide, but it is in urban areas that the impacts are most severe. An investigation of the ability of high resolution TerraSAR-X data to detect flooded regions in urban areas is described. An important application for this would be the calibration and validation of the flood extent predicted by an urban flood inundation model. To date, research on such models has been hampered by lack of suitable distributed validation data. The study uses a 3m resolution TerraSAR-X image of a 1-in-150 year flood near Tewkesbury, UK, in 2007, for which contemporaneous aerial photography exists for validation. The DLR SETES SAR simulator was used in conjunction with airborne LiDAR data to estimate regions of the TerraSAR-X image in which water would not be visible due to radar shadow or layover caused by buildings and taller vegetation, and these regions were masked out in the flood detection process. A semi-automatic algorithm for the detection of floodwater was developed, based on a hybrid approach. Flooding in rural areas adjacent to the urban areas was detected using an active contour model (snake) region-growing algorithm seeded using the un-flooded river channel network, which was applied to the TerraSAR-X image fused with the LiDAR DTM to ensure the smooth variation of heights along the reach. A simpler region-growing approach was used in the urban areas, which was initialized using knowledge of the flood waterline in the rural areas. Seed pixels having low backscatter were identified in the urban areas using supervised classification based on training areas for water taken from the rural flood, and non-water taken from the higher urban areas. Seed pixels were required to have heights less than a spatially-varying height threshold determined from nearby rural waterline heights. Seed pixels were clustered into urban flood regions based on their close proximity, rather than requiring that all pixels in the region should have low backscatter. This approach was taken because it appeared that urban water backscatter values were corrupted in some pixels, perhaps due to contributions from side-lobes of strong reflectors nearby. The TerraSAR-X urban flood extent was validated using the flood extent visible in the aerial photos. It turned out that 76% of the urban water pixels visible to TerraSAR-X were correctly detected, with an associated false positive rate of 25%. If all urban water pixels were considered, including those in shadow and layover regions, these figures fell to 58% and 19% respectively. These findings indicate that TerraSAR-X is capable of providing useful data for the calibration and validation of urban flood inundation models.