22 resultados para undergraduate mathematics students
Resumo:
This paper examines the extent to which a structured undergraduate research intervention, UROP, permits undergraduate students early access to legitimate peripheral participation (LPP) in a research community of practice. Accounts of placement experiences suggest that UROP affords rich possibilities for engagement with research practice. Undergraduates tread a path of gaining access to mature practice while also building their own independence, participating in work that they see matters to the community and making gains in use of a shared research repertoire. Students place UROP experiences in a contrasting frame to research exercises experienced during degree programmes; their sense of the authenticity of the research experienced through UROP emerges as a key element of these accounts. The data generate the interesting question that the degree of engagement with mature practice may account for more of the gain from UROP than simply the quantity of contact other researchers.
Resumo:
Bioscience Horizons (BH)commenced publication in 2008 and features research papers and reviews written by graduating UK bioscience students. The journal is run by a consortium of UK universities (the Universities of Nottingham, Reading, Leeds and Chester) in association with Oxford University Press. Its submissions encompass the full range of subjects taught by UK bioscience departments, ranging from agronomy to zoology and including animal behaviour, cancer research, environmental biology, microbial sciences, molecular biology, pharmacolgy, primatology, taxonomy and other areas. BH receives manuscripts from recent graduates (with a bachelor of science or equivalent first degree) describing research carried out during their undergraduate studies, usually as a final-year research project. All submissions undergo expert review and have to meet strict criteria for scientific excellence and originality. Articles are written by a single author and published with the agreement of the graduate's home university department. The journal has an ISSN number and is open-access; articles are freely 'cite-able' contributions to the bioscience research literature.
Resumo:
We undertook a study to investigate the views of both students and staff in our department towards assessment in mathematics, as a precursor to considering increasing the diversity of assessment types. In a survey and focus group there was reasonable agreement amongst the students with regards major themes such as mode of assessment. However, this level of agreement was not seen amongst the staff, where discussions regarding diversity in mathematics assessment definitely revealed a difference of opinion. As a consequence, we feel that the greatest barriers to increasing diversity may be with staff, and so more efforts are needed to communicate to staff the advantages and disadvantages, in order to give them greater confidence in trying a range of assessment types.
Resumo:
Final year research projects are an important part of undergraduate chemistry courses, allowing students to enhance transferable skills in teamworking, problem solving and presentations, at the same time as learning valuable practical skills. Several recent reports have highlighted the importance of research based studies as part of undergraduate courses. ‘We need to encourage universities to explore new models of curriculum. They should all incorporate research based study for undergraduates to cultivate awareness of research careers, to train students in research skills for employment, and to sustain the advantages of a research teaching connection,’ wrote Paul Ramsden from James Cook University, Australia, in a 2008 report for the UK’s Higher Education Academy.1 A 2010 report published by the Biopharma Skills Consortium – that promotes collaboration across the higher education sector in the area of biopharma – also stated that: ‘Companies seek recruits well placed to acclimatise quickly to the work environment. They are looking for recruits who can deploy a range of generic skills in the application of their knowledge.’2
Resumo:
Mobile devices can enhance undergraduate research projects and students’ research capabilities. The use of mobile devices such as tablet computers will not automatically make undergraduates better researchers, but their use should make investigations, writing, and publishing more effective and may even save students time. We have explored some of the possibilities of using “tablets” and “smartphones” to aid the research and inquiry process in geography and bioscience fieldwork. We provide two case studies as illustration of how students working in small research groups use mobile devices to gather and analyze primary data in field-based inquiry. Since April 2010, Apple’s iPad has changed the way people behave in the digital world and how they access their music, watch videos, or read their email much as the entrepreneurs Steve Jobs and Jonathan Ive intended. Now with “apps” and “the cloud” and the ubiquitous references to them appearing in the press and on TV, academics’ use of tablets is also having an impact on education and research. In our discussion we will refer to use of smartphones such as the iPhone, iPod, and Android devices under the term “tablet”. Android and Microsoft devices may not offer the same facilities as the iPad/iphone, but many app producers now provide versions for several operating systems. Smartphones are becoming more affordable and ubiquitous (Melhuish and Falloon 2010), but a recent study of undergraduate students (Woodcock et al. 2012, 1) found that many students who own smartphones are “largely unaware of their potential to support learning”. Importantly, however, students were found to be “interested in and open to the potential as they become familiar with the possibilities” (Woodcock et al. 2012). Smartphones and iPads could be better utilized than laptops when conducting research in the field because of their portability (Welsh and France 2012). It is imperative for faculty to provide their students with opportunities to discover and employ the potential uses of mobile devices in their learning. However, it is not only the convenience of the iPad or tablet devices or smartphones we wish to promote, but also a way of thinking and behaving digitally. We essentially suggest that making a tablet the center of research increases the connections between related research activities.
Resumo:
Objective: To introduce a new approach to problem based learning (PBL) used in the context of medicinal chemistry practical class teaching pharmacy students. Design: The described chemistry practical is based on independent studies by small groups of undergraduate students (4-5), who design their own practical work taking relevant professional standards into account. Students are carefully guided by feedback and acquire a set of skills important to their future profession as healthcare professionals. This model has been tailored to the application of PBL in a chemistry practical class setting for a large student cohort (150 students). Assessment: The achievement of learning outcomes is based on the submission of relevant documentation including a certificate of analysis, in addition to peer assessment. Some of the learning outcomes are also assessed in the final written examination at the end of the academic year. Conclusion: The described design of a novel PBL chemistry laboratory course for pharmacy students has been found to be successful. Self-reflective learning and engagement with feedback were encouraged, and students enjoyed the challenging learning experience. Skills that are highly essential for the students’ future careers as healthcare professionals are promoted.