39 resultados para ultrafast processes in condensed matter


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In recent years, the Standards for Qualified Teacher Status in England have placed new emphasis on student-teachers' ability to become integrated into the 'corporate life of the school' and to work with other professionals. Little research, however, has been carried out into how student-teachers perceive the social processes and interactions that are central to such integration during their initial teacher education school placements. This study aims to shed light on these perceptions. The data, gathered from 23 student-teachers through interviews and reflective writing, illustrate the extent to which the participants perceived such social processes as supporting or obstructing their development as teachers. Signals of inclusion, the degree of match or mismatch in students' and school colleagues' role expectations, and the social awareness of both school and student-teacher emerged as crucial factors in this respect. The student-teachers' accounts show their social interactions with school staff to be meaningful in developing their 'teacher self' and to be profoundly emotionally charged. The implications for mentor and student-teacher role preparation are discussed in this article.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Responses to an unfamiliar adult were examined in infants of mothers with social phobia (N = 79) and infants of nonanxious comparison mothers (N = 77) at 10 and 14 months in a social referencing paradigm. On each occasion, a female stranger first interacted with the mother and then approached and interacted with the infant. Over time, infants of mothers with social phobia showed increasing avoidance of the stranger, particularly when they were behaviorally inhibited. In boys, maternal social phobia was associated with increasing fearful responses. Infant avoidance was predicted by expressed maternal anxiety and low levels of encouragement to interact with the stranger. The findings are discussed in relation to theories concerning the intergenerational transmission of social anxiety.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Reading difficulties (RD) and movement difficulties (MD) co-occur more often in clinical populations than expected for independent disorders. In this study, we investigated the pattern of association between attentional processes, RD and MD in a population of 9 year old school children. Children were screened to identify index groups with RD, MD or both, plus a control group. These groups were then tested on a battery of cognitive attention assessments (TEA-Ch). Results confirmed that the occurrence of RD and MD was greater than would be predicted for independent disorders. Additionally, children with MD, whether or not combined with RD, had poor performance on all attention measures when compared with typically developing children. Children with RD only, were no poorer on measures of attention than typical children. The results are discussed with respect to approaches proposed to account for the co-occurrence of disorders.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Increasingly, the UK’s Private Finance Initiative has created a demand for construction companies to transfer knowledge from one organization or project to another. Knowledge transfer processes in such contexts face many challenges, due to the many resulting discontinuities in the involvement of organisations, personnel and information flow. This paper empirically identifies the barriers and enablers that hinder or enhance the transfer of knowledge in PFI contexts, drawing upon a questionnaire survey of construction firms. The main findings show that knowledge transfer processes in PFIs are hindered by time constraints, lack of trust, and policies, procedures, rules and regulations attached to the projects. Nevertheless, the processes of knowledge transfer are enhanced by emphasising the value and importance of a supportive leadership, participation/commitment from the relevant parties, and good communication between the relevant parties. The findings have considerable relevance to understanding the mechanism of knowledge transfer between organizations, projects and individuals within the PFI contexts in overcoming the barriers and enhancing the enablers. Furthermore, practitioners and managers can use the findings to efficiently design knowledge transfer frameworks that can be used to overcome the barriers encountered while enhancing the enablers to improve knowledge transfer processes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Successful knowledge transfer is an important process which requires continuous improvement in today’s knowledge-intensive economy. However, improving knowledge transfer processes represents a challenge for construction practitioners due to the complexity of knowledge acquisition, codification and sharing. Although knowledge transfer is context based, understanding the critical success factors can lead to improvements in the transfer process. This paper seeks to identify and evaluate the most significant critical factors for improving knowledge transfer processes in Public Private Partnerships/Private Finance Initiatives (PPP/PFI) projects. Drawing upon a questionnaire survey of 52 construction firms located in the UK, data is analysed using Severity Index (SI) and Coefficient of Variation (COV), to examine and identify these factors in PPP/PFI schemes. The findings suggest that a supportive leadership, participation/commitment from the relevant parties, and good communication between the relevant parties are crucial to improving knowledge transfer processes in PFI schemes. Practitioners, managers and researchers can use the findings to efficiently design performance measures for analysing and improving knowledge transfer processes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Executive summary Nature of the problem (science/management/policy) • Freshwater ecosystems play a key role in the European nitrogen (N) cycle, both as a reactive agent that transfers, stores and processes N loadings from the atmosphere and terrestrial ecosystems, and as a natural environment severely impacted by the increase of these loadings. Approaches • This chapter is a review of major processes and factors controlling N transport and transformations for running waters, standing waters, groundwaters and riparian wetlands. Key findings/state of knowledge • The major factor controlling N processes in freshwater ecosystems is the residence time of water, which varies widely both in space and in time, and which is sensitive to changes in climate, land use and management. • The effects of increased N loadings to European freshwaters include acidification in semi-natural environments, and eutrophication in more disturbed ecosystems, with associated loss of biodiversity in both cases. • An important part of the nitrogen transferred by surface waters is in the form of organic N, as dissolved organic N (DON) and particulate organic N (PON). This part is dominant in semi-natural catchments throughout Europe and remains a significant component of the total N load even in nitrate enriched rivers. • In eutrophicated standing freshwaters N can be a factor limiting or co-limiting biological production, and control of both N and phosphorus (P) loading is oft en needed in impacted areas, if ecological quality is to be restored. Major uncertainties/challenges • The importance of storage and denitrifi cation in aquifers is a major uncertainty in the global N cycle, and controls in part the response of catchments to land use or management changes. In some aquifers, the increase of N concentrations will continue for decades even if efficient mitigation measures are implemented now. • Nitrate retention by riparian wetlands has oft en been highlighted. However, their use for mitigation must be treated with caution, since their effectiveness is difficult to predict, and side effects include increased DON emissions to adjacent open waters, N2O emissions to the atmosphere, and loss of biodiversity. • In fact, the character and specific spatial origins of DON are not fully understood, and similarly the quantitative importance of indirect N2O emissions from freshwater ecosystems as a result of N leaching losses from agricultural soils is still poorly known at the regional scale. • These major uncertainties remain due to the lack of adequate monitoring (all forms of N at a relevant frequency), especially – but not only – in the southern and eastern EU countries. Recommendations (research/policy) • The great variability of transfer pathways, buffering capacity and sensitivity of the catchments and of the freshwater ecosystems calls for site specific mitigation measures rather than standard ones applied at regional to national scale. • The spatial and temporal variations of the N forms, the processes controlling the transport and transformation of N within freshwaters, require further investigation if the role of N in influencing freshwater ecosystem health is to be better understood, underpinning the implementation of the EU Water Framework Directive for European freshwaters.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this paper is to reconsider the Maximum Entropy Production conjecture (MEP) in the context of a very simple two-dimensional zonal-vertical climate model able to represent the total material entropy production due at the same time to both horizontal and vertical heat fluxes. MEP is applied first to a simple four-box model of climate which accounts for both horizontal and vertical material heat fluxes. It is shown that, under condition of fixed insolation, a MEP solution is found with reasonably realistic temperature and heat fluxes, thus generalising results from independent two-box horizontal or vertical models. It is also shown that the meridional and the vertical entropy production terms are independently involved in the maximisation and thus MEP can be applied to each subsystem with fixed boundary conditions. We then extend the four-box model by increasing its resolution, and compare it with GCM output. A MEP solution is found which is fairly realistic as far as the horizontal large scale organisation of the climate is concerned whereas the vertical structure looks to be unrealistic and presents seriously unstable features. This study suggest that the thermal meridional structure of the atmosphere is predicted fairly well by MEP once the insolation is given but the vertical structure of the atmosphere cannot be predicted satisfactorily by MEP unless constraints are imposed to represent the determination of longwave absorption by water vapour and clouds as a function of the state of the climate. Furthermore an order-of-magnitude estimate of contributions to the material entropy production due to horizontal and vertical processes within the climate system is provided by using two different methods. In both cases we found that approximately 40 mW m−2 K−1 of material entropy production is due to vertical heat transport and 5–7 mW m−2 K−1 to horizontal heat transport

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper introduces new insights into the hydrochemical functioning of lowland river systems using field-based spectrophotometric and electrode technologies. The streamwater concentrations of nitrogen species and phosphorus fractions were measured at hourly intervals on a continuous basis at two contrasting sites on tributaries of the River Thames – one draining a rural catchment, the River Enborne, and one draining a more urban system, The Cut. The measurements complement those from an existing network of multi-parameter water quality sondes maintained across the Thames catchment and weekly monitoring based on grab samples. The results of the sub-daily monitoring show that streamwater phosphorus concentrations display highly complex dynamics under storm conditions dependent on the antecedent catchment wetness, and that diurnal phosphorus and nitrogen cycles occur under low flow conditions. The diurnal patterns highlight the dominance of sewage inputs in controlling the streamwater phosphorus and nitrogen concentrations at low flows, even at a distance of 7 km from the nearest sewage treatment works in the rural River Enborne. The time of sample collection is important when judging water quality against ecological thresholds or standards. An exhaustion of the supply of phosphorus from diffuse and multiple septic tank sources during storm events was evident and load estimation was not improved by sub-daily monitoring beyond that achieved by daily sampling because of the eventual reduction in the phosphorus mass entering the stream during events. The results highlight the utility of sub-daily water quality measurements and the discussion considers the practicalities and challenges of in situ, sub-daily monitoring.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The parameterisation of diabatic processes in numerical models is critical for the accuracy of weather forecasts and for climate projections. A novel approach to the evaluation of these processes in models is introduced in this contribution. The approach combines a suite of on-line tracer diagnostics with off-line trajectory calculations. Each tracer tracks accumulative changes in potential temperature associated with a particular parameterised diabatic process in the model. A comparison of tracers therefore allows the identification of the most active diabatic processes and their downstream impacts. The tracers are combined with trajectories computed using model-resolved winds, allowing the various diabatic contributions to be tracked back to their time and location of occurrence. We have used this approach to investigate diabatic processes within a simulated extratropical cyclone. We focus on the warm conveyor belt, in which the dominant diabatic contributions come from large-scale latent heating and parameterised convection. By contrasting two simulations, one with standard convection parameterisation settings and another with reduced parameterised convection, the effects of parameterised convection on the structure of the cyclone have been determined. Under reduced parameterised convection conditions, the large-scale latent heating is forced to release convective instability that would otherwise have been released by the convection parameterisation. Although the spatial distribution of precipitation depends on the details of the split between parameterised convection and large-scale latent heating, the total precipitation amount associated with the cyclone remains largely unchanged. For reduced parameterised convection, a more rapid and stronger latent heating episode takes place as air ascends within the warm conveyor belt.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The primary role of land surface models embedded in climate models is to partition surface available energy into upwards, radiative, sensible and latent heat fluxes. Partitioning of evapotranspiration, ET, is of fundamental importance: as a major component of the total surface latent heat flux, ET affects the simulated surface water balance, and related energy balance, and consequently the feedbacks with the atmosphere. In this context it is also crucial to credibly represent the CO2 exchange between ecosystems and their environment. In this study, JULES, the land surface model used in UK weather and climate models, has been evaluated for temperate Europe. Compared to eddy covariance flux measurements, the CO2 uptake by the ecosystem is underestimated and the ET overestimated. In addition, the contribution to ET from soil and intercepted water evaporation far outweighs the contribution of plant transpiration. To alleviate these biases, adaptations have been implemented in JULES, based on key literature references. These adaptations have improved the simulation of the spatio-temporal variability of the fluxes and the accuracy of the simulated GPP and ET, including its partitioning. This resulted in a shift of the seasonal soil moisture cycle. These adaptations are expected to increase the fidelity of climate simulations over Europe. Finally, the extreme summer of 2003 was used as evaluation benchmark for the use of the model in climate change studies. The improved model captures the impact of the 2003 drought on the carbon assimilation and the water use efficiency of the plants. It, however, underestimates the 2003 GPP anomalies. The simulations showed that a reduction of evaporation from the interception and soil reservoirs, albeit not of transpiration, largely explained the good correlation between the carbon and the water fluxes anomalies that was observed during 2003. This demonstrates the importance of being able to discriminate the response of individual component of the ET flux to environmental forcing.