66 resultados para ubiquitous
Laboratory simulation of terrestrial meteorite weathering using the Bensour (LL6) ordinary chondrite
Resumo:
Laboratory dissolution experiments using the LL6 ordinary chondrite Bensour demonstrate that meteoritic minerals readily react with distilled water at low temperatures, liberating ions into solution and forming reaction products. Three experiments were performed, all for 68 days and at atmospheric fO(2) but using a range of water/rock ratios and different ternperatures. Experiments I and 2 were batch experiments and undertaken at room temperature, whereas in experiment 3, condensed boiling water was dripped onto meteorite subsamples within a Soxhlet extractor. Solutions from experiment 1 were chemically analyzed at the end of the experiment, whereas aliquots were extracted from experiments 2 and 3 for analysis at regular intervals. In all three experiments, a very significant proportion of the Na, Cl, and K within the Bensour subsamples entered solution, demonstrating that chlorapatite and feldspar were especially susceptible to dissolution. Concentrations of Mg, Al, Si, Ca, and Fe in solution were strongly affected by the precipitation of reaction products and Mg and Ca may also have been removed by sorption. Calculations predict saturation of experimental solutions with respect to Al hydroxides, Fe oxides, and Fe (oxy)hydroxides, which would have frequently been accompanied by hydrous aluminosilicates. Some reaction products were identified and include silica, a Mg-rich silicate, Fe oxides, and Fe (oxy)hydroxides. The implications of these results are that even very short periods of subaerial exposure of ordinary chondrites will lead to dissolution of primary minerals and crystallization of weathering products that are likely to include aluminosilicates and silicates, Mg-Ca carbonates, and sulfates in addition to the ubiquitous Fe oxides and (oxy)hydroxides.
Resumo:
The spatial distribution of aerosol chemical composition and the evolution of the Organic Aerosol (OA) fraction is investigated based upon airborne measurements of aerosol chemical composition in the planetary boundary layer across Europe. Sub-micron aerosol chemical composition was measured using a compact Time-of-Flight Aerosol Mass Spectrometer (cToF-AMS). A range of sampling conditions were evaluated, including relatively clean background conditions, polluted conditions in North-Western Europe and the near-field to far-field outflow from such conditions. Ammonium nitrate and OA were found to be the dominant chemical components of the sub-micron aerosol burden, with mass fractions ranging from 20--50% each. Ammonium nitrate was found to dominate in North-Western Europe during episodes of high pollution, reflecting the enhanced NO_x and ammonia sources in this region. OA was ubiquitous across Europe and concentrations generally exceeded sulphate by 30--160%. A factor analysis of the OA burden was performed in order to probe the evolution across this large range of spatial and temporal scales. Two separate Oxygenated Organic Aerosol (OOA) components were identified; one representing an aged-OOA, termed Low Volatility-OOA and another representing fresher-OOA, termed Semi Volatile-OOA on the basis of their mass spectral similarity to previous studies. The factors derived from different flights were not chemically the same but rather reflect the range of OA composition sampled during a particular flight. Significant chemical processing of the OA was observed downwind of major sources in North-Western Europe, with the LV-OOA component becoming increasingly dominant as the distance from source and photochemical processing increased. The measurements suggest that the aging of OA can be viewed as a continuum, with a progression from a less oxidised, semi-volatile component to a highly oxidised, less-volatile component. Substantial amounts of pollution were observed far downwind of continental Europe, with OA and ammonium nitrate being the major constituents of the sub-micron aerosol burden. Such anthropogenically perturbed air masses can significantly perturb regional climate far downwind of major source regions.
Resumo:
Broadband shortwave and longwave radiative fluxes observed both at the surface and from space during the Radiative Atmospheric Divergence using ARM Mobile Facility, GERB data and AMMA Stations (RADAGAST) experiment in Niamey, Niger, in 2006 are presented. The surface fluxes were measured by the Atmospheric Radiation Measurement (ARM) Program Mobile Facility (AMF) at Niamey airport, while the fluxes at the top of the atmosphere (TOA) are from the Geostationary Earth Radiation Budget (GERB) instrument on the Meteosat-8 satellite. The data are analyzed as daily averages, in order to minimize sampling differences between the surface and top of atmosphere instruments, while retaining the synoptic and seasonal changes that are the main focus of this study. A cloud mask is used to identify days with cloud versus those with predominantly clear skies. The influence of temperature, water vapor, aerosols, and clouds is investigated. Aerosols are ubiquitous throughout the year and have a significant impact on both the shortwave and longwave fluxes. The large and systematic seasonal changes in temperature and column integrated water vapor (CWV) through the dry and wet seasons are found to exert strong influences on the longwave fluxes. These influences are often in opposition to each other, because the highest temperatures occur at the end of the dry season when the CWV is lowest, while in the wet season the lowest temperatures are associated with the highest values of CWV. Apart from aerosols, the shortwave fluxes are also affected by clouds and by the seasonal changes in CWV. The fluxes are combined to provide estimates of the divergence of radiation across the atmosphere throughout 2006. The longwave divergence shows a relatively small variation through the year, because of a partial compensation between the seasonal variations in the outgoing longwave radiation (OLR) and surface net longwave radiation. A simple model of the greenhouse effect is used to interpret this result in terms of the dependence of the normalized greenhouse effect at the TOA and of the effective emissivity of the atmosphere at the surface on the CWV. It is shown that, as the CWV increases, the atmosphere loses longwave energy to the surface with about the same increasing efficiency with which it traps the OLR. When combined with the changes in temperature, this maintains the atmospheric longwave divergence within the narrow range that is observed. The shortwave divergence is mainly determined by the CWV and aerosol loadings and the effect of clouds is much smaller than on the component fluxes.
Resumo:
Organic farming has often been found to provide benefits for biodiversity, but the benefits can depend on the species considered and characteristics of the surrounding landscape. In an intensively farmed area of Northeast Italy we investigated whether isolated organic farms, in a conventionally farmed landscape, provided local benefits for insect pollinators and pollination services. We quantified the relative effects of local management (i.e. the farm system), landscape management (proportion of surrounding uncultivated land) and interactions between them. We compared six organic and six conventional vine fields. The proportion of surrounding uncultivated land was calculated for each site at radii of 200, 500, 1000 and 2000 m. The organic fields did not differ from the conventional in their floral resources or proportion of surrounding uncultivated land. Data were collected on pollinator abundance and species richness, visitation rates to, and pollination of experimental potted plants. None of these factors were significantly affected by the farming system. The abundance of visits to the potted plants in the conventional fields tended to be negatively affected by the proportion of surrounding uncultivated land. The proportion fruit set, weight of seeds per plant and seed weight in conventional and organic fields were all negatively affected by the proportion of surrounding uncultivated land. In vine fields the impact of the surrounding landscape was stronger than the local management. Enhancement of biodiversity through organic farming should not be assumed to be ubiquitous, as potential benefits may be offset by the crop type, organicmanagement practices and the specific habitat requirements in the surrounding landscape.
Resumo:
P-glycoproteins (p-gps) are ubiquitous membrane proteins from the ABC (ATP-binding cassette) family. They have been found in many animals, bacteria, plants and fungi and are extremely important in regulating a wide range of xenobiotics including pesticides. P-gps have been linked to xenobiotic resistance, most famously in resistance to cancer drug treatments. Their wide substrate range has led to what is known as "multidrug resistance", where resistance developed to one type of xenobiotic gives resistance to a different classes of xenobiotic. P-gps are a major contributor to drug resistance in mammalian tumours and infections of protozoan parasites such as Plasmodium and Leishmania. There is a growing body of literature suggesting that p-gps, and other ABC proteins, are important in regulating pesticide toxicity and represent potential control failure through the development of pesticide resistance, in both agricultural and medical pests. At the same time, aspects of their biochemistry offer new hope in pest control, in particular in furthering our understanding of toxicity and offering insights into how we can improve control without recourse to new chemical discovery. (c) 2008 Elsevier Inc. All rights reserved.
Resumo:
Motivation: Intrinsic protein disorder is functionally implicated in numerous biological roles and is, therefore, ubiquitous in proteins from all three kingdoms of life. Determining the disordered regions in proteins presents a challenge for experimental methods and so recently there has been much focus on the development of improved predictive methods. In this article, a novel technique for disorder prediction, called DISOclust, is described, which is based on the analysis of multiple protein fold recognition models. The DISOclust method is rigorously benchmarked against the top.ve methods from the CASP7 experiment. In addition, the optimal consensus of the tested methods is determined and the added value from each method is quantified. Results: The DISOclust method is shown to add the most value to a simple consensus of methods, even in the absence of target sequence homology to known structures. A simple consensus of methods that includes DISOclust can significantly outperform all of the previous individual methods tested.
Resumo:
Plant annexins are ubiquitous, soluble proteins capable of Ca2+-dependent and Ca2+-independent binding to endomembranes and the plasma membrane. Some members of this multigene family are capable of binding to F-actin, hydrolysing ATP and GTP, acting as peroxidases or cation channels. These multifunctional proteins are distributed throughout the plant and throughout the life cycle. Their expression and intracellular localization are under developmental and environmental control. The in vitro properties of annexins and their known, dynamic distribution patterns suggest that they could be central regulators or effectors of plant growth and stress signalling. Potentially, they could operate in signalling pathways involving cytosolic free calcium and reactive oxygen species.
Resumo:
Networks are ubiquitous in natural, technological and social systems. They are of increasing relevance for improved understanding and control of infectious diseases of plants, animals and humans, given the interconnectedness of today's world. Recent modelling work on disease development in complex networks shows: the relative rapidity of pathogen spread in scale-free compared with random networks, unless there is high local clustering; the theoretical absence of an epidemic threshold in scale-free networks of infinite size, which implies that diseases with low infection rates can spread in them, but the emergence of a threshold when realistic features are added to networks (e.g. finite size, household structure or deactivation of links); and the influence on epidemic dynamics of asymmetrical interactions. Models suggest that control of pathogens spreading in scale-free networks should focus on highly connected individuals rather than on mass random immunization. A growing number of empirical applications of network theory in human medicine and animal disease ecology confirm the potential of the approach, and suggest that network thinking could also benefit plant epidemiology and forest pathology, particularly in human-modified pathosystems linked by commercial transport of plant and disease propagules. Potential consequences for the study and management of plant and tree diseases are discussed.
Resumo:
Ferritins are nearly ubiquitous iron storage proteins playing a fundamental role in iron metabolism. They are composed of 24 subunits forming a spherical protein shell encompassing a central iron storage cavity. The iron storage mechanism involves the initial binding and subsequent O-2-dependent oxidation of two Fe2+ ions located at sites A and B within the highly conserved dinuclear "ferroxidase center" in individual subunits. Unlike animal ferritins and the heme-containing bacterioferritins, the Escherichia coli ferritin possesses an additional iron-binding site (site C) located on the inner surface of the protein shell close to the ferroxidase center. We report the structures of five E. coli ferritin variants and their Fe3+ and Zn2+ (a redox-stable alternative for Fe2+) derivatives. Single carboxyl ligand replacements in sites A, B, and C gave unique effects on metal binding, which explain the observed changes in Fe2+ oxidation rates. Binding of Fe2+ at both A and B sites is clearly essential for rapid Fe2+ oxidation, and the linking of Fe-B(2+) to Fe-C(2+) enables the oxidation of three Fe2+ ions. The transient binding of Fe2+ at one of three newly observed Zn2+ sites may allow the oxidation of four Fe2+ by one dioxygen molecule.
Resumo:
Helices and sheets are ubiquitous in nature. However, there are also some examples of self-assembling molecules forming supramolecular helices and sheets in unnatural systems. Unlike supramolecular sheets there are a very few examples of peptide sub-units that can be used to construct supramolecular helical architectures using the backbone hydrogen bonding functionalities of peptides. In this report we describe the design and synthesis of two single turn/bend forming peptides (Boc-Phe-Aib-Ile-OMe 1 and Boc-Ala-Leu-Aib-OMe 2) (Aib: alpha-aminoisobutyric acid) and a series of double-turn forming peptides (Boc-Phe-Aib-IIe-Aib-OMe 3, Boc-Leu-Aib-Gly-Aib-OMe 4 and Boc-gamma-Abu-Aib-Leu-Aib-OMe 5) (gamma-Abu: gamma-aminobutyric acid). It has been found that, in crystals, on self-assembly, single turn/bend forming peptides form either a supramolecular sheet (peptide 1) or a supramolecular helix (peptide 2). unlike self-associating double turn forming peptides, which have only the option of forming supramolecular helical assemblages. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
A photochemical trajectory model has been used to simulate the chemical evolution of air masses arriving at the TORCH field campaign site in the southern UK during late July and August 2003, a period which included a widespread and prolonged photochemical pollution episode. The model incorporates speciated emissions of 124 nonmethane anthropogenic VOC and three representative biogenic VOC, coupled with a comprehensive description of the chemistry of their degradation. A representation of the gas/aerosol absorptive partitioning of ca. 2000 oxygenated organic species generated in the Master Chemical Mechanism (MCM v3.1) has been implemented, allowing simulation of the contribution to organic aerosol (OA) made by semi- and non-volatile products of VOC oxidation; emissions of primary organic aerosol (POA) and elemental carbon (EC) are also represented. Simulations of total OA mass concentrations in nine case study events (optimised by comparison with observed hourly-mean mass loadings derived from aerosol mass spectrometry measurements) imply that the OA can be ascribed to three general sources: (i) POA emissions; (ii) a '' ubiquitous '' background concentration of 0.7 mu g m(-3); and (iii) gas-to-aerosol transfer of lower volatility products of VOC oxidation generated by the regional scale processing of emitted VOC, but with all partitioning coefficients increased by a species-independent factor of 500. The requirement to scale the partitioning coefficients, and the implied background concentration, are both indicative of the occurrence of chemical processes within the aerosol which allow the oxidised organic species to react by association and/or accretion reactions which generate even lower volatility products, leading to a persistent, non-volatile secondary organic aerosol (SOA). The contribution of secondary organic material to the simulated OA results in significant elevations in the simulated ratio of organic carbon (OC) to EC, compared with the ratio of 1.1 assigned to the emitted components. For the selected case study events, [OC]/[EC] is calculated to lie in the range 2.7-9.8, values which are comparable with the high end of the range reported in the literature.
Resumo:
Oxidation is an almost ubiquitous feature of inflammatory reactions. We discuss the development of nanocarriers that respond to the presence of oxidants with profound physical reorganization, which could in perspective allow their use for delivering anti-inflammatory principles in an inflammation-responsive fashion. We also present a study demonstrating that the response of polysulfide nanoparticles has a bulk character, i.e., the odixation reactions happen homogeneously throughout the nanoparticles, and not interfacially.
Resumo:
alpha B-Crystallin is a ubiquitous small heat-shock protein (sHsp) renowned for its chaperone ability to prevent target protein aggregation. It is stress-inducible and its up-regulation is associated with a number of disorders, including those linked to the deposition of misfolded proteins, such as Alzheimer's and Parkinson's diseases. We have characterised the formation of amyloid fibrils by human alpha B-crystallin in detail, and also that of alpha A-crystallin and the disease-related mutant R120G (alpha B-crystallin. We find that the last 12 amino acid residues of the C-terminal region of alpha B-crystallin are predicted from their physico-chemical properties to have a very low propensity to aggregate. H-1 NMR spectroscopy reveals that this hydrophilic C-terminal region is flexible both in its solution state and in amyloid fibrils, where it protrudes from the fibrillar core. We demonstrate, in addition, that the equilibrium between different protofilament assemblies can be manipulated and controlled in vitro to select for particular alpha B-crystallin amyloid morphologies. Overall, this study suggests that there could be a fine balance in vivo between the native functional sHsp state and the formation of amyloid fibrils. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Purpose – Facilities managers have less visibility of how buildings are being used due to flexible working and unpredictable workers. The purpose of this paper is to examine the current issues in workspace management and an automatic solution through radio frequency identification (RFID) that could provide real time information on the volume and capacity of buildings. Design/methodology/approach – The study described in this paper is based on a case study at a facilities management (FM) department. The department is examining a ubiquitous technology in the form of innovative RFID for security and workspace management. Interviews and observations are conducted within the facilities department for the initial phase of the implementation of RFID technology. Findings – Research suggests that work methods are evolving and becoming more flexible. With this in mind, facilities managers face new challenges to create a suitable environment for an unpredictable workforce. RFID is one solution that could provide facilities managers with an automatic way of examining space in real time and over a wider area than currently possible. RFID alone for space management is financially expensive but by making the application multiple for other areas makes more business sense. Practical implications – This paper will provide practicing FM and academics with the knowledge gained from the application of RFID in this organisation. While the concept of flexible working seems attractive, there is an emerging need to provide various forms of spaces that enable employees' satisfaction and enhance the productivity of the organisation. Originality/value – The paper introduces new thinking on the subject of “workspace management”. It highlights the current difficulties in workspace management and how an RFID solution will benefit workspace methods.