29 resultados para tungsten coil
Resumo:
Cyclo-condensation of aroyl hydrazides with the cationic tungsten-dichlorodiazomethane complex [BrW(dppe)(2)(N2CCI2)](+) affords neutral oxadiazolyldiazenido(1-) complexes which react readily with a wide range of transition and non-transition metal species to afford a novel series of crystallographically-characterised heteropolynuclear complexes containing bridging oxadiazolyldiazenido(1-) ligands.
Resumo:
Hierarchical ordering in a side group liquid crystal block copolymer is investigated by differential scanning calorimetry, polarized optical microscopy, small-angle X-ray and neutron scattering (SAXS and SANS) and transmission electron microscopy (TEM). A series of block copolymers with a range of compositions was prepared by atom transfer radical polymerization, comprising a polystyrene block and a poly(methyl methacrylate) block bearing chiral cholesteryl mesogens. Smectic ordering is observed as well as microphase separation of the block copolymer. Lamellar structures were observed for far larger volume fractions than for coil-coil copolymers (up to a volume fraction of liquid crystal block, f(LC) = 0.8). A sample with f(LC) = 0.86 exhibited a hexagonal-packed cylinder morphology, as confirmed by SAXS and TEM. The matrix comprised the liquid crystal block, with the mesogens forming smectic layers. For the liquid crystal homopolymer and samples with high f(LC), a smectic-smectic phase transition was observed below the clearing point. At low temperature, the smectic phase comprises coexisting domains with monolayer S-A,S-1 coexisting with interdigitated S-A,S-d domains. At high temperature a SA,1 phase is observed. This is the only structure observed for samples with lower f(LC). These unprecedented results point to the influence of block copolymer microphase separation on the smectic ordering.
Resumo:
Biologically-inspired peptide sequences have been explored as auxiliaries to mediate self-assembly of synthetic macromolecules into hierarchically organized solution and solid state nanostructures. Peptide sequences inspired by the coiled coil motif and "switch" peptides, which can adopt both amphiphilic alpha-helical and beta-strand conformations, were conjugated to poly(ethylene glycol) (PEG). The solution and solid state self-assembly of these materials was investigated using a variety of spectroscopic, scattering and microscopic techniques. These experiments revealed that the folding and organization properties of the peptide sequences are retained upon conjugation of PEG and that they provide the driving force for the formation of the different nanoscale structures which were observed. The possibility of using defined peptide sequences to direct structure formation of synthetic polymers together with the potential of peptide sequences to induce a specific biological response offers interesting prospects for the development of novel self-assembled and biologically active materials.
Resumo:
The synthesis of highly ordered mesoporous tungsteno-silicas in which a high percentage of tungsten is introduced into a silica framework is reported hereafter. Powder XRD and TEM have been used to characterize the materials synthesized at room temperature. The materials are shown to be homogeneous as there is no evidence for any crystalline species other than the silica framework. The pore diameter and the surface area of the materials, evaluated from the nitrogen adsorption isotherms and unit cell parameter indicate a pore diameter of about 2 nm and a surface area of 1400 m(2) g(-1) for a content of 10% tungsten. Catalyzed dehydration of 2-propanol has been investigated and the activity of the materials synthesized is significant, even for low tungsten content W-MCM-41 materials. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Isothermal titration microcalorimetry (ITC) has been applied to investigate protein-tannin interactions. Two hydrolyzable tannins were studied, namely myrabolan and tara tannins, for their interaction with bovine serum albumin (BSA), a model globular protein, and gelatin, a model proline-rich random coil protein. Calorimetry data indicate that protein-tannin interaction mechanisms are dependent upon the nature of the protein involved. Tannins apparently interact nonspecifically with the globular BSA, leading to binding saturation at estimated tannin/BSA molar ratios of 48:1 for tara- and 178:1 for myrabolan tannins. Tannins bind to the random coil protein gelatin by a two-stage mechanism. The energetics of the first stage show evidence for cooperative binding of tannins to the protein, while the second stage indicates gradual saturation of binding sites as observed for interaction with BSA. The structure and flexibility of the tannins themselves alters the stoichiometry of the interaction, but does not appear to have any significant affect on the overall binding mechanism observed. This study demonstrates the potential of ITC for providing an insight into the nature of protein-tannin interactions.
Resumo:
Results from both experimental measurements and 3D numerical simulations of Ground Source Heat Pump systems (GSHP) at a UK climate are presented. Experimental measurements of a horizontal-coupled slinky GSHP were undertaken in Talbot Cottage at Drayton St Leonard site, Oxfordshire, UK. The measured thermophysical properties of in situ soil were used in the CFD model. The thermal performance of slinky heat exchangers for the horizontal-coupled GSHP system for different coil diameters and slinky interval distances was investigated using a validated 3D model. Results from a two month period of monitoring the performance of the GSHP system showed that the COP decreased with the running time. The average COP of the horizontal-coupled GSHP was 2.5. The numerical prediction showed that there was no significant difference in the specific heat extraction of the slinky heat exchanger at different coil diameters. However, the larger the diameter of coil, the higher the heat extraction per meter length of soil. The specific heat extraction also increased, but the heat extraction per meter length of soil decreased with the increase of coil central interval distance.
Resumo:
New high technology products usher in novel possibilities to transform the design, production and use of buildings. The high technology companies which design, develop and introduce these new products by generating and applying novel scientific and technical knowledge are faced with significant market uncertainty, technological uncertainty and competitive volatility. These characteristics present unique innovation challenges compared to low- and medium technology companies. This paper reports on an ongoing Construction Knowledge Exchange funded project which is tracking, real time, the new product development process of a new family of light emitting diode (LEDs) technologies. LEDs offer significant functional and environmental performance improvements over incumbent tungsten and halogen lamps. Hitherto, the use of energy efficient, low maintenance LEDs has been constrained by technical limitations. Rapid improvements in basic science and technology mean that for the first time LEDs can provide realistic general and accent lighting solutions. Interim results will be presented on the complex, emergent new high technology product development processes which are being revealed by the integrated supply chain of a LED module manufacture, a luminaire (light fitting) manufacture and end user involved in the project.
Resumo:
The aim of this study was to evaluate the ability of an Escherichia coli with the multiple antibiotic resistance (MAR) phenotype to withstand the stresses of slaughter compared to an isogenic progenitor strain. A wild type E. coli isolate (345-2RifC) of porcine origin was used to derive 3 isogenic MAR mutants. Escherichia coli 345-2RifC and its MAR derivatives were inoculated into separate groups of pigs. Once colonisation was established, the pigs were slaughtered and persistence of the E. coli strains in the abattoir environment and on the pig carcasses was monitored and compared. No significant difference (P>0.05) was detected between the shedding of the different E. coli strains from the live pigs. Both the parent strain and its MAR derivatives persisted in the abattoir environment, however the parent strain was recovered from 6 of the 13 locations sampled while the MAR derivatives were recovered from 11 of 13 and the number of MAR E. coil recovered was 10-fold higher than the parent strain at half of the locations. The parent strain was not recovered from any of the 6 chilled carcasses whereas the MAR derivatives were recovered from 3 out of 5 (P<0.001). This study demonstrates that the expression of MAR in 345-2RifC increased its ability to survive the stresses of the slaughter and chilling processes. Therefore in E. coli, MAR can give a selective advantage, compared to non-MAR strains, for persistence on chilled carcasses thereby facilitating transit of these strains through the food chain. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
To investigate the role of fimbriae and flagella in the pathogenesis of avian colibacillosis, isogenic insertionally inactivated mutant strains of Escherichia coil O78:K80 strain EC34195 defective in the elaboration of type-1 and curli fimbriae and flagella were constructed by allelic exchange, Single and multiple non-fimbriate and non-flagellate mutant strains were compared to the wild-type in vitro in adherence assays with a HEp-2 cell line, a mucus-secreting cell line HT2916E, a non-mucus-secreting cell line HT2919A, tracheal explant and proximal gut explant, Mutant strains defective in the elaboration of type-1 fimbriae were significantly less adherent - in the order of 90% reduction - than the wild-type strain in all assays. Mutant strains defective in the elaboration of flagella were generally as adherent as the wild-type strain except when assayed with the mucus-secreting cell line HT2916E, for which a significant reduction of adherence - of the order of 90% - compared with the wild-type strain was observed. Mutant strains defective for the elaboration of curb fimbriae adhered as well as the wild-type strain in all assays, except when assayed in tests with gut explant tissue for which a significant reduction of adherence - of the order of 80% - compared with the wild-type strain was observed, Adherence to explants was to epithelial, not serous, surfaces and was 10-fold greater to tracheal than to gut explants, Together, these data support the hypothesis that type-1 fimbriae are significant factors in adherence, aided by flagella for penetration of mucus and curli fimbriae for adherence to the gut.
Resumo:
The remarkable diversity of the self-assembly behavior of PEG−peptides is reviewed, including self-assemblies formed by PEG−peptides with β-sheet and α-helical (coiled-coil) peptide sequences. The modes of self-assembly in solution and in the solid state are discussed. Additionally, applications in bionanotechnology and synthetic materials science are summarized.
Resumo:
The thermoelectric behaviour of the transition-metal disulphides n-type NiCr2S4 and p-type CuCrS2 is investigated. Materials prepared by high-temperature reaction were consolidated using cold-pressing and sintering, hot-pressing (HP) in graphite dies or spark-plasma sintering (SPS) in tungsten carbide dies. The consolidation conditions have a marked influence on the electrical transport properties. In addition to the effect on sample density, altering the consolidation conditions results in changes to the sample composition, including the formation of impurity phases. Maximum room-temperature power factors are 0.18 mW m-1 K-2 and 0.09 mW m-1 K-2 for NiCr2S4 and CuCrS2, respectively. Thermal conductivities of ca. 1.4 and 1.2 W m-1 K-1 lead to figures of merit of 0.024 and 0.023 for NiCr2S4 and CuCrS2, respectively.
Resumo:
The conformational properties of symmetric flexible diblock polyampholytes are investigated by scaling theory and molecular dynamics simulations. The electrostatically driven coil-globule transition of a symmetric diblock polyampholyte is found to consist of three regimes identified with increasing electrostatic interaction strength. In the first (folding) regime the electrostatic attraction causes the chain to fold through the overlap of the two blocks, while each block is slightly stretched by self-repulsion. The second (weak association or scrambled egg) regime is the classical collapse of the chain into a globule dominated by the fluctuation-induced attractions between oppositely charged sections of the chain. The structure of the formed globule can be represented as a dense packing of the charged chain sections (electrostatic attraction blobs). The third (strong association or ion binding) regime starts with direct binding of oppositely charged monomers (dipole formation), followed by a cascade of multipole formation (quadrupole, hexapole, octupole, etc.), leading to multiplets analogous to those found in ionomers. The existence of the multiplet cascade has also been confirmed in the simulations of solutions of short polymers with only one single charge (either positive or negative) in the middle of each chain. We use scaling theory to estimate the average chain size and the electrostatic correlation length as functions of the chain length, strength of electrostatic interactions, charge fraction, and solvent quality. The theoretically predicted scaling laws of these conformational properties are in very good agreement with our simulation results.
Resumo:
This paper outlines some of the physics opportunities available with the GSI RISING active stopper and presents preliminary results from an experiment aimed at performing beta-delayed gamma-ray spectroscopic studies in heavy-neutron-rich nuclei produced following the projectile fragmentation of a 1 GeV per nucleon 208Pb primary beam. The energy response of the silicon active stopping detector for both heavy secondary fragments and beta-particles is demonstrated and preliminary results on the decays of neutron-rich Tantalum (Ta) to Tungsten (W) isotopes are presented as examples of the potential of this technique to allow new structural studies in hitherto experimentally unreachable heavy, neutron-rich nuclei. The resulting spectral information inferred from excited states in the tungsten daughter nuclei are compared with results from axially symmetric Hartree–Fock calculations of the nuclear shape and suggest a change in ground state structure for the N = 116 isotone 190W compared to the lighter isotopes of this element.
Resumo:
The i-motif structures are formed by oligonucleotides containing cytosine tracts under acidic conditions. The folding of the i-motif under physiological conditions is of great interest because of its biological role. In this study, we investigated the effect of the intra-strand cross-link on the stability of the i-motif structure. The 4-vinyl-substituted analog of thymidine (T-vinyl) was incorporated into the 5′-end of the human telomere complementary strand, which formed the intra-strand cross-link with the internal adenine. The intra-strand cross-linked i-motif displayed CD spectra similar to that of the natural i-motif at acidic pH, which was transformed into a random coil with the increasing pH. The pH midpoint for the transition from the i-motif to random coil increased from pH 6.1 for the natural one to pH 6.8 for the cross-linked one. The thermodynamic parameters were obtained by measuring the thermal melting behaviors by CD and UV, and it was determined that the intra-strand cross-linked i-motif is stabilized due to a favorable entropy effect. Thus, this study has clearly indicated the validity of the intra-strand cross-linking for stabilization of the i-motif structure.